A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America
Abstract
:1. Introduction
- (i)
- To evaluate the carbon-negative potential of biochar systems derived from woody biomass and their impact on mitigating greenhouse gas emissions within the urban sustainability context in the United States.
- (ii)
- To analyze the environmental, economic, and social co-benefits associated with integrating biochar systems into urban waste management strategies, soil enhancement practices, and climate adaptation plans.
- (iii)
- To identify key challenges, policy gaps, and opportunities for scaling the utilization of woody biomass biochar in urban planning and infrastructure development, thereby fostering long-term sustainable urban management.
2. Urbanization and Climate Change
2.1. Urbanization and Its Influence on Climate Change
2.2. Urban Heat Island (UHI) Effect
2.3. Urbanization and Local Climate Shifts
3. The Role and Importance of Urban Forests
Ecological and Social Benefits of Urban Forests
4. Converting Urban Forest Biomass into Biochar
4.1. Biochar as a Sustainable Byproduct of Urban Forest Management
- Slow Pyrolysis: Characterized by extended reaction durations—spanning from minutes to days—this approach yields approximately 35% biochar, 30% bio-oil, and 35% syngas [56]. While slow pyrolysis has a long history of enhancing char production, it is less efficient for high-quality bio-oil due to the negative impacts of prolonged residence times on its yield and characteristics.
- Fast Pyrolysis: This methodology employs rapid heating of biomass to achieve high temperatures, providing yields of 15–25% biochar, 60–75% bio-oil, and 10–20% syngas [57]. Fast pyrolysis is conducted under low-temperature conditions, with high heating rates and short residence times, to optimize liquid yield. This approach has gained traction for its potential to generate liquid fuels and facilitate their conversion into high-value chemicals, thereby enhancing the economic feasibility of pyrolysis systems.
4.2. Effect of Feedstock on Biochar Properties
4.3. Effect of Pyrolysis Temperature on Biochar Properties
5. Applications of Biochar in Urban Infrastructure
5.1. Enhancing Urban Soil Health with Biochar
5.2. Biochar-Based Solutions for Stormwater Management
5.3. Integrating Biochar into Green Roof Systems
5.4. Biochar as a Sustainable Insulation Material
6. Biochar Production from Urban Forests: A Sustainable Opportunity for U.S. Cities
6.1. Case Study: GHG Life Cycle Assessment of CharBoss® Biochar Production and Potential Use for Carbon Dioxide Removal (CDR) Certificate Generation
6.2. Opportunity Assessment
6.3. Case Study: Hiawatha Avenue
7. Conclusions
- Urban woody biomass constitutes a significant, yet largely untapped, resource with considerable potential for sustainable biochar production and carbon sequestration.
- Cities like Boulder and Minneapolis exemplify the technical and economic viability of converting urban tree waste into biochar, effectively diminishing waste while enhancing soil and environmental health.
- Biochar production systems such as CharBoss® can efficiently process both forest and urban biomass, offering scalable carbon removal solutions backed by verified life cycle assessments.
- The integration of biochar into urban forestry and stormwater management projects, illustrated by Minneapolis’ Hiawatha Avenue initiative, demonstrates multifaceted advantages, including improved soil structure and increased water retention.
- The creation of regional biochar markets can facilitate the diversion of organic waste from landfills, mitigate greenhouse gas emissions, and foster the development of carbon-negative urban infrastructure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Biochar |
BMP | Best Management Practice |
Btu | British Thermal Unit |
CEC | Cation Exchange Capacity |
CH4 | Methane |
CO | Carbon Monoxide |
CO2 | Carbon Dioxide |
COD | Chemical Oxygen Demand |
EAB | Emerald Ash Borer |
GHG | Greenhouse Gas |
GSI | Green Stormwater Infrastructure |
HHV | Higher Heating Value |
IBI | International Biochar Initiative |
LHSBC | Latent Heat Storage Biocomposite |
NIC | Natural Inorganic Clay |
NO2 | Nitrogen Dioxide |
O₃ | Ozone |
PAHs | Polycyclic Aromatic Hydrocarbons |
PCBs | Polychlorinated Biphenyls |
pH | Potential of Hydrogen |
PM₁₀ | Particulate Matter < 10 µm |
SEM | Scanning Electron Microscope |
SMSC | Shakopee Mdewakanton Sioux Community |
SO2 | Sulfur Dioxide |
SSA | Specific Surface Area |
TN | Total Nitrogen |
TP | Total Phosphorus |
UHI | Urban Heat Island |
U.S. | United States |
VOCs | Volatile Organic Compounds |
WC | Wood Chips |
References
- Gan, L.; Garg, A.; Wang, H.; Mei, G.; Liu, J. Influence of Biochar Amendment on Stormwater Management in Green Roofs: Experiment with Numerical Investigation. Acta Geophys. 2021, 69, 2417–2426. [Google Scholar] [CrossRef]
- Franco, C.R.; Page-Dumroese, D.S. Decreasing the Urban Carbon Footprint with Woody Biomass Biochar in the United States of America. Carbon. Footpr. 2023, 2, 18. [Google Scholar] [CrossRef]
- World Bank Open Data. Available online: https://data.worldbank.org (accessed on 31 March 2025).
- Census. Available online: https://www2.census.gov/geo/pdfs/reference/ua/Census_UA_2020FAQs_Feb2023.pdf (accessed on 10 April 2025).
- Cities and Climate Change: An Urgent Agenda. Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/en/194831468325262572 (accessed on 24 May 2025).
- Expert Comment: Urbanisation’s Role in the Climate Crisis Is Being Overlooked | University of Oxford. Available online: https://www.ox.ac.uk/news/2024-01-29-expert-comment-urbanisation-s-role-climate-crisis-being-overlooked (accessed on 24 May 2025).
- Interactions Between Climate Change and Urbanization Will Shape the Future of Biodiversity | Nature Climate Change. Available online: https://www.nature.com/articles/s41558-024-01996-2 (accessed on 10 April 2025).
- Ehrlich, D.; Melchiorri, M.; Capitani, C. Population Trends and Urbanisation in Mountain Ranges of the World. Land 2021, 10, 255. [Google Scholar] [CrossRef]
- Das, S.; Choudhury, M.R.; Chatterjee, B.; Das, P.; Bagri, S.; Paul, D.; Bera, M.; Dutta, S. Unraveling the Urban Climate Crisis: Exploring the Nexus of Urbanization, Climate Change, and Their Impacts on the Environment and Human Well-Being–A Global Perspective. AIMS Public Health 2024, 11, 963–1001. [Google Scholar] [CrossRef] [PubMed]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The Broad Footprint of Climate Change from Genes to Biomes to People. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef]
- Merilä, J.; Hendry, A.P. Climate change, adaptation, and phenotypic plasticity: The problem and the evidence. Evol. Appl. 2014, 7, 1–14. [Google Scholar] [CrossRef]
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.L.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, S.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Biochar in Climate Change Mitigation | Nature Geoscience. Available online: https://www.nature.com/articles/s41561-021-00852-8 (accessed on 31 March 2025).
- Jones, S.; Somper, C. The Role of Green Infrastructure in Climate Change Adaptation in London. Geogr. J. 2014, 180, 191–196. [Google Scholar] [CrossRef]
- Wang, J.; Banzhaf, E. Towards a Better Understanding of Green Infrastructure: A Critical Review. Ecol. Indic. 2018, 85, 758–772. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air Pollution Removal by Urban Trees and Shrubs in the United States. Urban. For. Urban. Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and Forest Effects on Air Quality and Human Health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Crane, D.E. Carbon Storage and Sequestration by Urban Trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Biomass to Biochar: Maximizing the Carbon Value. Available online: https://csanr.wsu.edu/biomass2biochar/ (accessed on 5 April 2025).
- Hagenbo, A.; Antón-Fernández, C.; Bright, R.M.; Rasse, D.; Astrup, R. Climate Change Mitigation Potential of Biochar from Forestry Residues under Boreal Condition. Sci. Total Environ. 2022, 807, 151044. [Google Scholar] [CrossRef]
- Muhammad Irfan, R.; Kaleri, F.N.; Rizwan, M.; Mehmood, I. Potential Value of Biochar as a Soil Amendment: A Review. Pure Appl. Biol. PAB 2017, 6, 1494–1502. [Google Scholar]
- Irfan, M.; Chen, Q.; Yue, Y.; Pang, R.; Lin, Q.; Zhao, X.; Chen, H. Co-Production of Biochar, Bio-Oil and Syngas from Halophyte Grass (Achnatherum splendens L.) under Three Different Pyrolysis Temperatures. Bioresour. Technol. 2016, 211, 457–463. [Google Scholar] [CrossRef]
- Rathnayake, D.; Schmidt, H.-P.; Leifeld, J.; Mayer, J.; Epper, C.A.; Bucheli, T.D.; Hagemann, N. Biochar from Animal Manure: A Critical Assessment on Technical Feasibility, Economic Viability, and Ecological Impact. GCB Bioenergy 2023, 15, 1078–1104. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, H.; Chu, M.; Zhang, C.; Tang, J.; Chang, S.X.; Mašek, O.; Ok, Y.S. Biochar Affects Greenhouse Gas Emissions in Various Environments: A Critical Review. Land Degrad. Dev. 2022, 33, 3327–3342. [Google Scholar] [CrossRef]
- Peng, Y.; Li, R.; Irfan, M.; Liu, S.; Wang, D.; Elder, T.; Yan, Q.; Cai, Z. Lead Ion Adsorption by Biochar Manufactured from Downed Timber: The Effect of Downed Timber Maturity and Environmental Exposure Period. Wood Mater. Sci. Eng. 2024, 1–12. [Google Scholar] [CrossRef]
- Hagemann, N.; Joseph, S.; Schmidt, H.P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, K.W.; et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef]
- Pradhan, A.; Chan, C.; Roul, P.K.; Halbrendt, J.; Sipes, B. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 2018, 163, 27–35. [Google Scholar] [CrossRef]
- Forster, P.; Artaxo, P.; Bodeker, G. Changes in Atmospheric Constituents and in Radiative Forcing. Notes 2005, 18, 129–234. [Google Scholar]
- Wang, F.; Harindintwali, J.D.; Wei, K.; Shan, Y.; Mi, Z.; Costello, M.J.; Grunwald, S.; Feng, Z.; Wang, F.; Guo, Y.; et al. Climate Change: Strategies for Mitigation and Adaptation. Innov. Geosci. 2023, 1, 100015. [Google Scholar] [CrossRef]
- World Development Indicators | Data Catalog. Available online: https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators. (accessed on 7 April 2025).
- Frontiers | Urban Ecosystem Services and Climate Change: A Dynamic Interplay. Available online: https://www.frontiersin.org/journals/sustainable-cities/articles/10.3389/frsc.2023.1281430/full (accessed on 7 April 2025).
- Home | DESA Publications. Available online: https://desapublications.un.org/ (accessed on 22 April 2025).
- United States-Urbanization 2020. Available online: https://www.statista.com/statistics/269967/urbanization-in-the-united-states/ (accessed on 22 April 2025).
- Meloche, J.-P. Revitalizing American Cities. Artic.-J. Urban. Res. 2015. [Google Scholar] [CrossRef]
- Bai, X.; Blanco, H.; Gurney, K.R.; Kılkış, Ş.; Lucon, O.; Murakami, J.; Pan, J.; Sharifi, A.; Yamagata, Y.; White, L. Urban Systems and Other Settlements. In Climate Change 2022-Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2022; pp. 861–952. [Google Scholar]
- Grimmond, S.U.E. Urbanization and Global Environmental Change: Local Effects of Urban Warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- US EPA. Heat Island Effect. Available online: https://www.epa.gov/heatislands (accessed on 22 April 2025).
- Climate Risk Management–Moody’s. Available online: https://www.moodys.com/web/en/us/capabilities/climate-risk.html (accessed on 22 April 2025).
- Yuan, Y.; Li, C.; Geng, X.; Yu, Z.; Fan, Z.; Wang, X. Natural-Anthropogenic Environment Interactively Causes the Surface Urban Heat Island Intensity Variations in Global Climate Zones. Environ. Int. 2022, 170, 107574. [Google Scholar] [CrossRef]
- Cheela, V.R.S.; John, M.; Biswas, W.; Sarker, P. Combating Urban Heat Island Effect—A Review of Reflective Pavements and Tree Shading Strategies. Buildings 2021, 11, 93. [Google Scholar] [CrossRef]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. A Spatially Explicit Surface Urban Heat Island Database for the United States: Characterization, Uncertainties, and Possible Applications. ISPRS J. Photogramm. Remote Sens. 2020, 168, 74–88. [Google Scholar] [CrossRef]
- Urban Risk and Resilience to Climate Change and Natural Hazards-Techniques for Disaster Risk Management and Mitigation-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119359203.ch3 (accessed on 9 April 2025).
- Arnfield, A.J. Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Heidari, H.; Arabi, M.; Warziniack, T.; Sharvelle, S. Effects of Urban Development Patterns on Municipal Water Shortage. Front. Water 2021, 3, 694817. [Google Scholar] [CrossRef]
- Lacke, M.C.; Mote, T.L.; Shepherd, J.M. Aerosols and Associated Precipitation Patterns in Atlanta. Atmos. Environ. 2009, 43, 4359–4373. [Google Scholar] [CrossRef]
- Senadheera, S.S.; Withana, P.A.; Lim, J.Y.; You, S.; Chang, S.X.; Wang, F.; Rhee, J.H.; Ok, Y.S. Carbon Negative Biochar Systems Contribute to Sustainable Urban Green Infrastructure: A Critical Review. Green. Chem. 2024, 26, 10634–10660. [Google Scholar] [CrossRef]
- Integrative Approaches to Investigating Human-Natural Systems: The Baltimore Ecosystem Study | Cairn.Info. Available online: https://shs.cairn.info/journal-natures-sciences-societes-2006-1-page-4?lang=en (accessed on 14 April 2025).
- Ecosystems and Human Well-Being: Wetlands and Water Synthesis: A Report of the Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005; ISBN 978-1-56973-597-8.
- Other Benefits of Urban Forests (U.S. National Park Service). Available online: https://www.nps.gov/articles/000/uerla-trees-other-benefits.htm (accessed on 14 April 2025).
- Urban Forests. Available online: https://www.fs.usda.gov/managing-land/urban-forests (accessed on 14 April 2025).
- USDA. Available online: https://research.fs.usda.gov/psw/projects/value-urban-forests (accessed on 12 April 2025).
- Hermansen, A. Urban forest systems and green stormwater infrastructure. FS-1146. Wash. DC 2020, 1146, 1–23. [Google Scholar]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar Impact on Nutrient Leaching from a Midwestern Agricultural Soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Irfan, M.; Lin, Q.; Yue, Y.; Ruan, X.; Chen, Q.; Zhao, X.; Dong, X. Co-Production of Biochar, Bio-Oil, and Syngas from Tamarix Chinensis Biomass under Three Different Pyrolysis Temperatures. Bioresources 2016, 11, 8929–8940. Available online: https://bioresources.cnr.ncsu.edu/ (accessed on 3 April 2025). [CrossRef]
- Yue, Y.; Lin, Q.; Irfan, M.; Chen, Q.; Zhao, X.; Li, G. Slow Pyrolysis as a Promising Approach for Producing Biochar from Sunflower Straw. Bioresources 2018, 13, 7455–7469. [Google Scholar] [CrossRef]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef]
- Laird, D.A.; Brown, R.C.; Amonette, J.E.; Lehmann, J. Review of the Pyrolysis Platform for Coproducing Bio-Oil and Biochar. Biofuels Bioprod. Biorefining 2009, 3, 547–562. [Google Scholar] [CrossRef]
- Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Czernik, S.; Bridgwater, A.V. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Pyrolysis Biochar Systems, Balance Between Bioenergy and Carbon Sequestration-Crombie-2015-GCB Bioenergy-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12137 (accessed on 15 April 2025).
- Becidan, M.; Skreiberg, Ø.; Hustad, J.E. Products Distribution and Gas Release in Pyrolysis of Thermally Thick Biomass Residues Samples. J. Anal. Appl. Pyrolysis 2007, 78, 207–213. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Zhu, B. Feedstock and Pyrolysis Temperature Influence Biochar Properties and Its Interactions with Soil Substances: Insights from a DFT Calculation. Sci. Total Environ. 2024, 922, 171259. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Rodrigues, L.; Budai, A.; Elsgaard, L.; Hardy, B.; Keel, S.G.; Mondini, C.; Plaza, C.; Leifeld, J. The Importance of Biochar Quality and Pyrolysis Yield for Soil Carbon Sequestration in Practice. Eur. J. Soil. Sci. 2023, 74, e13396. [Google Scholar] [CrossRef]
- Biochar Feedstocks. Available online: https://biochar-international.org/about-biochar/how-to-make-biochar/biochar-feedstocks/ (accessed on 15 April 2025).
- Yue, Y.; Lin, Q.; Irfan, M.; Chen, Q.; Zhao, X.; Li, G. Characteristics and Potential Values of Bio-Products Derived from Switchgrass Grown in a Saline Soil Using a Fixed-Bed Slow Pyrolysis System. Bioresources 2017, 12, 6529–6544. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Biochar Physicochemical Parameters as a Result of Feedstock Material and Pyrolysis Temperature: Predictable for the Fate of Biochar in Soil? | Environmental Geochemistry and Health. Available online: https://link.springer.com/article/10.1007/s10653-017-0004-9 (accessed on 15 April 2025).
- Anand, A.; Gautam, S.; Ram, L.C. Feedstock and Pyrolysis Conditions Affect Suitability of Biochar for Various Sustainable Energy and Environmental Applications. J. Anal. Appl. Pyrolysis 2023, 170, 105881. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis Temperature Induced Changes in Characteristics and Chemical Composition of Biochar Produced from Conocarpus Wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.-K.; Yang, J.E.; Ok, Y.S. Effects of Pyrolysis Temperature on Soybean Stover- and Peanut Shell-Derived Biochar Properties and TCE Adsorption in Water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Soil Science. Available online: https://journals.lww.com/soilsci/fulltext/2009/02000/impact_of_biochar_amendment_on_fertility_of_a.6.aspx?casa_token=Xn9rex-2P_AAAAAA:tw0AvzYnO3VxTwKkSW0iI1rIJgmmGVckMuFC-fW9zoB0e4CC0cnUVEXDJQlVTsxUrVNVDf89LEJbhzqVUvtlDrDiNg (accessed on 15 April 2025).
- Bird, M.I.; Wurster, C.M.; de Paula Silva, P.H.; Bass, A.M.; de Nys, R. Algal Biochar–Production and Properties. Bioresour. Technol. 2011, 102, 1886–1891. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, K.-R.; Yang, J.E.; Ok, Y.S.; Owens, G.; Nehls, T.; Wessolek, G.; Kim, K.-H. Effect of Biochar on Reclaimed Tidal Land Soil Properties and Maize (Zea mays L.) Response. Chemosphere 2016, 142, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Harris, W. Properties of Dairy-Manure-Derived Biochar Pertinent to Its Potential Use in Remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface Chemistry Variations among a Series of Laboratory-Produced Biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Abduljabbar, A.; Vithanage, M.; Ok, Y.S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Al-Wabel, M.I. Biochar Production from Date Palm Waste: Charring Temperature Induced Changes in Composition and Surface Chemistry. J. Anal. Appl. Pyrolysis 2015, 115, 392–400. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hyun, J.; Yoo, S.Y.; Yoo, G. The Role of Biochar in Alleviating Soil Drought Stress in Urban Roadside Greenery. Geoderma 2021, 404, 115223. [Google Scholar] [CrossRef]
- Dendrochronological Analysis of Urban Trees: Climatic Response and Impact of Drought on Frequently Used Tree Species | Trees. Available online: https://link.springer.com/article/10.1007/s00468-014-1019-9 (accessed on 16 April 2025).
- Thomas, S.C.; Gale, N. Biochar and Forest Restoration: A Review and Meta-Analysis of Tree Growth Responses. New For. 2015, 46, 931–946. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Meza, E.N.; Catania, M.; Fite, K. Biochar and Biosolids Increase Tree Growth and Improve Soil Quality for Urban Landscapes. J. Environ. Qual. 2013, 42, 1372–1385. [Google Scholar] [CrossRef]
- Zwart, D.C.; Kim, S.-H. Biochar Amendment Increases Resistance to Stem Lesions Caused by Phytophthora Spp. in Tree Seedlings in: HortScience. HortScience 2012, 47, 1736–1740. [Google Scholar] [CrossRef]
- Devitt, D.A.; Carstensen, K.; Morris, R.L. Residential Water Savings Associated with Satellite-Based ET Irrigation Controllers. J. Irrig. Drain. Eng. 2008, 134, 74–82. [Google Scholar] [CrossRef]
- Kjelgren, R.; Rupp, L.; Kilgren, D. Water Conservation in Urban Landscapes. HortScience 2000, 35, 1037–1040. [Google Scholar] [CrossRef]
- Biochar for Stormwater Treatment: Technology Overview and Case Study | US Biochar Initiative. Available online: https://biochar-us.org/presentation/biochar-stormwater-treatment-technology-overview-and-case-study (accessed on 22 April 2025).
- Stormwater Management | US Biochar Initiative. Available online: https://biochar-us.org/stormwater-management (accessed on 22 April 2025).
- Qianqian, Z.; Liping, M.; Huiwei, W.; Long, W. Analysis of the Effect of Green Roof Substrate Amended with Biochar on Water Quality and Quantity of Rainfall Runoff. Environ. Monit. Assess. 2019, 191, 304. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ma, J.; Wei, J.; Gong, X.; Yu, X.; Guo, H.; Zhao, Y. Biochar Increases Plant Growth and Alters Microbial Communities via Regulating the Moisture and Temperature of Green Roof Substrates. Sci. Total Environ. 2018, 635, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Park, J.H.; Wi, S.; Yang, S.; Ok, Y.S.; Kim, S. Latent Heat Storage Biocomposites of Phase Change Material-Biochar as Feasible Eco-Friendly Building Materials. Environ. Res. 2019, 172, 637–648. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Gupta, S.; Kua, H.W. Application of Rice Husk Biochar and Thermally Treated Low Silica Rice Husk Ash to Improve Physical Properties of Cement Mortar. Theor. Appl. Fract. Mech. 2019, 104, 102376. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Factors Determining the Potential of Biochar As a Carbon Capturing and Sequestering Construction Material: Critical Review. J. Mater. Civ. Eng. 2017, 29, 04017086. [Google Scholar] [CrossRef]
- Lazzari, L.K.; Neves, R.M.; Perondi, D.; Zattera, A.J.; Santana, R.M.C. Cellulose/Biochar Aerogels: Thermal Properties and Lifetime Prediction. Congr. Bras. De Polímeros 2021, 2021. [Google Scholar]
- Lee, H.; Yang, S.; Wi, S.; Kim, S. Thermal Transfer Behavior of Biochar-Natural Inorganic Clay Composite for Building Envelope Insulation. Constr. Build. Mater. 2019, 223, 668–678. [Google Scholar] [CrossRef]
- Cuthbertson, D.; Berardi, U.; Briens, C.; Berruti, F. Biochar from Residual Biomass as a Concrete Filler for Improved Thermal and Acoustic Properties. Biomass Bioenergy 2019, 120, 77–83. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Ash, R.M. Annual Biomass Loss and Potential Value of Urban Tree Waste in the United States. Urban. For. Urban. Green. 2019, 46, 126469. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil. Sci. 2009, 174, 105. [Google Scholar] [CrossRef]
- Minneapolis, City of Lakes. Minneapolis to Become First City in North America to Own and Operate Biochar Facility. Available online: https://www.minneapolismn.gov/news/2025/march/biochar-facility/ (accessed on 22 April 2025).
- Fini, A.; Frangi, P.; Mori, J.; Donzelli, D.; Ferrini, F. Nature Based Solutions to Mitigate Soil Sealing in Urban Areas: Results from a 4-Year Study Comparing Permeable, Porous, and Impermeable Pavements. Environ. Res. 2017, 156, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Introducing CharBoss: New Mobile Biochar Production Machine. Available online: https://www.fs.usda.gov/inside-fs/delivering-mission/apply/introducing-charboss-new-mobile-biochar-production-machine (accessed on 25 May 2025).
City | Available Urban Tree Biomass (MT Annual) | Production Technology Assumptions | Estimated Biochar Production Potential (MT Annual) |
---|---|---|---|
Boulder, USA | 9041 tons | Community-scale TrollWorks system | 1356 tons |
Minneapolis, USA | 4481 tons (city tree removals) | 2-line ARTi reactor | 1120 tons (city biomass) |
56,148 tons (county wood waste) | 14,037 tons (county-wide) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Afandi, G.; Irfan, M.; Moustafa, A.; Ibrahim, S.; Sapkota, S. A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America. Urban Sci. 2025, 9, 214. https://doi.org/10.3390/urbansci9060214
El Afandi G, Irfan M, Moustafa A, Ibrahim S, Sapkota S. A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America. Urban Science. 2025; 9(6):214. https://doi.org/10.3390/urbansci9060214
Chicago/Turabian StyleEl Afandi, Gamal, Muhammad Irfan, Amira Moustafa, Salem Ibrahim, and Santosh Sapkota. 2025. "A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America" Urban Science 9, no. 6: 214. https://doi.org/10.3390/urbansci9060214
APA StyleEl Afandi, G., Irfan, M., Moustafa, A., Ibrahim, S., & Sapkota, S. (2025). A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America. Urban Science, 9(6), 214. https://doi.org/10.3390/urbansci9060214