Incidence of Scrub Typhus according to Changes in Geographic and Demographic Characteristic in the Chungcheong Region of Korea
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Statistical Analysis
2.3. Ethics Statement
3. Results
3.1. Demographic Characteristics by the Region
3.2. Outbreak Status and Characteristics of Scrub Typhus in Chungcheong Region
3.3. Characteristics of Deaths Associated with Scrub Typhus in the Chungcheong Region
3.4. Correlation with Demographic Characteristics and Incidence of Case
3.5. Analyze Risk Factors of Scrub Typhus Case
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, T.K.; Ju, J.W.; Lee, H.I. Monitoring of Chiggers (Scrub Typhus Vector) in the Republic of Korea, 2021. Public Health Wkly. Rep. 2022, 15, 2954–2970. [Google Scholar]
- Hwang, K.; Jang, H.N.; Lee, T.W.; Cho, H.S.; Bae, E.; Chang, S.H.; Park, D.J. Incidence, risk factors and clinical outcomes of acute kidney injury associated with scrub typhus: A retrospective study of 510 consecutive patients in South Korea (2001–2013). BMJ Open 2017, 7, e013882. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Deng, K.; Chen, J.; Zhang, M. Epidemiological and clinical characteristics of scrub typhus in northern Fujian, China, from 2015 to 2019. BMC Infect. Dis. 2023, 23, 479. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Kim, C.M.; Kim, D.M.; Seo, J.W.; Kim, D.Y.; Yun, N.R.; Jung, S.I.; Kim, U.J.; Kim, S.E.; Kim, H.A.; et al. Coinfection With Severe Fever With Thrombocytopenia Syndrome and Scrub Typhus in Korea. Open Forum Infect. Dis. 2023, 10, ofad377. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sarma, N. Scrub Typhus: An Emerging Threat. Indian J. Dermatol. 2017, 62, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Allison, J.C.; Park, K.; No, J.S.; Lee, S.H.; Park, K.; Kim, J.; Klein, T.A.; Kim, H.C.; Kim, W.K.; et al. A Clinical Case of Scrub Typhus in the United States Forces Korea Patient with Eschar and Genetic Identification of Orientia tsutsugamushi Using Multiplex PCR-Based Next-Generation Sequencing. Pathogens 2021, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, S.J.; Youn, S.K.; Park, K.; Gwack, J. Epidemiology of scrub typhus and the eschars patterns in South Korea from 2008 to 2012. Jpn. J. Infect. Dis. 2014, 67, 458–463. [Google Scholar] [CrossRef]
- Taylor, A.J.; Paris, D.H.; Newton, P.N. A Systematic Review of Mortality from Untreated Scrub Typhus (Orientia tsutsugamushi). PLoS Negl. Trop. Dis. 2015, 9, e0003971. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Ikegami, Y.; Tasaki, K.; Abe, M.; Tase, C. Case of scrub typhus complicated by severe disseminated intravascular coagulation and death. Emerg. Med. Australas. 2012, 24, 577–580. [Google Scholar] [CrossRef]
- Singh, O.B.; Panda, P.K. Scrub Typhus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Zhang, Y.; Zhang, M.; Qin, Y.; Zhang, L.; Kang, D.; Wei, R.; Yang, C. Epidemiological analysis and risk prediction of scrub typhus from 2006 to 2021 in Sichuan, China. Front Public Health 2023, 11, 1177578. [Google Scholar] [CrossRef]
- Kim, J.; Seok, H.; Jeon, J.H.; Choi, W.S.; Seo, G.H.; Park, D.W. Association of scrub typhus with incidence of dementia: A nationwide population-based cohort study in Korea. BMC Infect. Dis. 2023, 23, 127. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.J.; Jeon, J.H.; Hwang, K.W. Epidemiological characteristics of cases with scrub typhus and their correlation with chigger mite occurrence (2019–2021): A focus on case occupation and activity locations. Entomol. Res. 2023, 53, 247–256. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, I.Y.; Song, H.J.; Kim, J.; Park, H.J.; Song, D.; Jang, W.J. Geographical distribution of Orientia tsutsugamushi strains in chiggers from three provinces in Korea. Microbiol. Immunol. 2018, 62, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Zangpo, T.; Phuentshok, Y.; Dorji, K.; Dorjee, C.; Dorjee, S.; Jolly, P.; Morris, R.; Marquetoux, N.; McKenzie, J. Environmental, Occupational, and Demographic Risk Factors for Clinical Scrub Typhus, Bhutan. Emerg. Infect. Dis. 2023, 29, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.Y.; Kim, H.C.; Lee, Y.S.; Seo, J.H.; Lim, J.W.; Yong, T.S.; Klein, T.A.; Lee, W.J. Geographical distribution and relative abundance of vectors of scrub typhus in the Republic of Korea. Korean J. Parasitol. 2009, 47, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.H.; Kang, J.S. History of Tsutsugamushi Disease in Korea. Infect. Chemother. 2019, 51, 196–209. [Google Scholar] [CrossRef] [PubMed]
- George, T.; Rajan, S.J.; Peter, J.V.; Hansdak, S.G.; Prakash, J.A.J.; Iyyadurai, R.; Mathuram, A.; Antonisamy, B.; Ramanathan, K.; Sudarsanam, T.D. Risk Factors for Acquiring Scrub Typhus among the Adults. J. Glob. Infect. Dis. 2018, 10, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Chang, C. Impact of Changes in Forest Use Caused by the COVID-19 Pandemic on the Perception of Forest Ecosystem Services in the Republic of Korea. Sustainability 2022, 14, 10914. [Google Scholar] [CrossRef]
- Pan, K.; Huang, R.; Xu, L.; Lin, F. Exploring the effects and interactions of meteorological factors on the incidence of scrub typhus in Ganzhou City, 2008–2021. BMC Public Health 2024, 24, 36. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, Y.; Li, X.; Ma, Y.; Tao, X.; Wu, X.; Yang, Z. Climate variability, animal reservoir and transmission of scrub typhus in Southern China. PLoS Negl. Trop. Dis. 2017, 11, e0005447. [Google Scholar] [CrossRef]
- Li, T.; Yang, Z.; Dong, Z.; Wang, M. Meteorological factors and risk of scrub typhus in Guangzhou, southern China, 2006–2012. Infect. Dis. 2014, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, M.; Li, T.; Liu, Y.; Jiang, G.; Wu, Y.; Liu, Q.; Gong, Z.; Sun, J. The ecological and etiological investigation of ticks and rodents in China: Results from an ongoing surveillance study in Zhejiang Province. Front. Vet. Sci. 2023, 10, 1268440. [Google Scholar] [CrossRef] [PubMed]
- Ramudu, K.; Mohan, V.M.; Jyothirmai, D.; Prasad, D.V.S.S.S.V.; Agrawal, R.; Boopathi, S. Machine Learning and Artificial Intelligence in Disease Prediction. In Contemporary Applications of Data Fusion for Advanced Healthcare Informatics; Advances in Healthcare Information Systems and Administration; IGI Global: Hershey, PA, USA, 2023; pp. 297–318. [Google Scholar]
- Wang, Z.; Zhang, W.; Lu, N.; Lv, R.; Wang, J.; Zhu, C.; Ai, L.; Mao, Y.; Tan, W.; Qi, Y. A potential tool for predicting epidemic trends and outbreaks of scrub typhus based on Internet search big data analysis in Yunnan Province, China. Front. Public Health 2022, 10, 1004462. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.; Kim, S.; Kim, G.; Singh, V.P.; Hong, S.; Kim, H.S. Scrub Typhus Incidence Modeling with Meteorological Factors in South Korea. Int. J. Environ. Res. Public Health 2015, 12, 7254–7273. [Google Scholar] [CrossRef]
- Byun, E.; Lee, J.; Lee, S. Analysis of Spatial Changes in the Sejong City Region by the Construction of Administrative City: Focusing on Migration and Commuting OD Data. Ournal Korea Plan. Assoc. 2023, 58, 167–178. [Google Scholar]
- Peng, P.Y.; Duan, H.Y.; Xu, L.; Zhang, L.T.; Sun, J.Q.; Zu, Y.; Ma, L.J.; Sun, Y.; Yan, T.L.; Guo, X.G. Epidemiologic changes of a longitudinal surveillance study spanning 51 years of scrub typhus in mainland China. Sci. Rep. 2024, 14, 3138. [Google Scholar] [CrossRef]
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 1632 | 1993 | 1425 | 1412 | 1638 | 1853 | 1315 | 667 | 581 | 883 | 980 | |
Area | Daejeon | 444 | 517 | 300 | 284 | 307 | 297 | 182 | 117 | 113 | 160 | 175 |
(27.2) | (25.9) | (21.1) | (20.1) | (18.7) | (16.0) | (13.8) | (17.5) | (19.4) | (18.1) | (17.9) | ||
Sejong | 88 | 69 | 49 | 42 | 73 | 65 | 43 | 12 | 30 | 33 | 44 | |
(5.4) | (3.5) | (3.4) | (3.0) | (4.5) | (3.5) | (3.3) | (1.8) | (5.2) | (3.7) | (4.5) | ||
Chungnam | 738 | 1,010 | 819 | 858 | 1,006 | 1,250 | 907 | 442 | 371 | 571 | 645 | |
(45.2) | (50.7) | (57.5) | (60.8) | (61.4) | (67.5) | (69.0) | (66.3) | (63.9) | (64.7) | (65.8) | ||
Chungbuk | 362 | 397 | 257 | 228 | 252 | 241 | 183 | 96 | 67 | 119 | 116 | |
(22.2) | (19.9) | (18.0) | (16.1) | (15.4) | (13.0) | (13.9) | (14.4) | (11.5) | (13.5) | (11.8) | ||
Sex | Male | 606 | 748 | 552 | 520 | 693 | 754 | 486 | 260 | 217 | 323 | 410 |
(37.1) | (37.5) | (38.7) | (36.8) | (42.3) | (40.7) | (37.0) | (39.0) | (37.3) | (36.6) | (41.8) | ||
Female | 1,026 | 1,245 | 873 | 892 | 945 | 1,099 | 829 | 407 | 364 | 560 | 570 | |
(62.9) | (62.5) | (61.3) | (63.2) | (57.7) | (59.3) | (63.0) | (61.0) | (62.7) | (63.4) | (58.2) | ||
Age | 0–12 | 31 | 29 | 9 | 12 | 18 | 22 | 7 | 5 | 4 | 5 | 4 |
(1.9) | (1.5) | (0.6) | (0.8) | (1.1) | (1.2) | (0.5) | (0.7) | (0.7) | (0.6) | (0.4) | ||
13–18 | 18 | 11 | 15 | 4 | 15 | 12 | 3 | 3 | 2 | 5 | 3 | |
(1.1) | (0.6) | (1.1) | (0.3) | (0.9) | (0.6) | (0.2) | (0.4) | (0.3) | (0.6) | (0.3) | ||
19–39 | 140 | 111 | 63 | 78 | 84 | 88 | 47 | 33 | 25 | 33 | 29 | |
(8.6) | (5.6) | (4.4) | (5.5) | (5.1) | (4.7) | (3.6) | (4.9) | (4.3) | (3.7) | (3.0) | ||
40–59 | 495 | 643 | 434 | 362 | 428 | 516 | 320 | 136 | 102 | 157 | 153 | |
(30.3) | (32.3) | (30.5) | (25.6) | (26.1) | (27.8) | (24.3) | (20.4) | (17.6) | (17.8) | (15.6) | ||
60–74 | 607 | 788 | 578 | 610 | 656 | 701 | 534 | 261 | 251 | 359 | 441 | |
(37.2) | (39.5) | (40.6) | (43.2) | (40.0) | (37.8) | (40.6) | (39.1) | (43.2) | (40.7) | (45.0) | ||
>75 | 341 | 411 | 326 | 346 | 437 | 514 | 404 | 229 | 197 | 324 | 350 | |
(20.9) | (20.6) | (22.9) | (24.5) | (26.7) | (27.7) | (30.7) | (34.3) | (33.9) | (36.7) | (35.7) | ||
Occupation | Housewife | 220 | 246 | 181 | 157 | 172 | 240 | 179 | 60 | 47 | 64 | 45 |
(13.5) | (12.3) | (12.7) | (11.1) | (10.5) | (13.0) | (13.6) | (9.0) | (8.1) | (7.2) | (4.6) | ||
Soldier | 10 | 17 | 5 | 4 | 9 | 7 | 3 | 2 | 0 | 1 | 0 | |
(0.6) | (0.9) | (0.4) | (0.3) | (0.5) | (0.4) | (0.2) | (0.3) | (0.0) | (0.1) | (0.0) | ||
Engineer | 22 | 23 | 20 | 8 | 18 | 14 | 14 | 2 | 2 | 7 | 5 | |
(1.3) | (1.2) | (1.4) | (0.6) | (1.1) | (0.8) | (1.1) | (0.3) | (0.3) | (0.8) | (0.5) | ||
Farmer | 245 | 350 | 220 | 250 | 298 | 359 | 222 | 111 | 60 | 64 | 79 | |
(15.0) | (17.6) | (15.4) | (17.7) | (18.2) | (19.4) | (16.9) | (16.6) | (10.3) | (7.2) | (8.1) | ||
Officer | 66 | 44 | 38 | 23 | 18 | 19 | 19 | 6 | 4 | 6 | 4 | |
(4.0) | (2.2) | (2.7) | (1.6) | (1.1) | (1.0) | (1.4) | (0.9) | (0.7) | (0.7) | (0.4) | ||
Service | 28 | 43 | 19 | 34 | 25 | 23 | 18 | 9 | 8 | 3 | 11 | |
(1.7) | (2.2) | (1.3) | (2.4) | (1.5) | (1.2) | (1.4) | (1.3) | (1.4) | (0.3) | (1.1) | ||
Sales | 10 | 15 | 7 | 7 | 5 | 6 | 5 | 6 | 2 | 1 | 1 | |
(0.6) | (0.8) | (0.5) | (0.5) | (0.3) | (0.3) | (0.4) | (0.9) | (0.3) | (0.1) | (0.1) | ||
Student | 32 | 29 | 22 | 16 | 21 | 25 | 6 | 9 | 7 | 8 | 2 | |
(2.0) | (1.5) | (1.5) | (1.1) | (1.3) | (1.3) | (0.5) | (1.3) | (1.2) | (0.9) | (0.2) | ||
Labor | 15 | 19 | 18 | 16 | 17 | 18 | 9 | 7 | 3 | 0 | 2 | |
(0.9) | (1.0) | (1.3) | (1.1) | (1.0) | (1.0) | (0.7) | (1.0) | (0.5) | (0.0) | (0.2) | ||
Specialized job | 3 | 4 | 8 | 5 | 1 | 4 | 3 | 3 | 2 | 1 | 1 | |
(0.2) | (0.2) | (0.6) | (0.4) | (0.1) | (0.2) | (0.2) | (0.4) | (0.3) | (0.1) | (0.1) | ||
Not employed | 295 | 332 | 241 | 337 | 369 | 431 | 319 | 135 | 124 | 192 | 138 | |
(18.1) | (16.7) | (16.9) | (23.9) | (22.5) | (23.3) | (24.3) | (20.2) | (21.3) | (21.7) | (14.1) | ||
Etc. * | 686 | 871 | 646 | 555 | 685 | 707 | 518 | 317 | 322 | 536 | 692 | |
(42.0) | (43.7) | (45.3) | (39.3) | (41.8) | (38.2) | (39.4) | (47.5) | (55.4) | (60.7) | (70.6) |
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | Total | 2 | 5 | 0 | 0 | 1 | 4 | 1 | 0 | 1 | 1 | 7 |
Daejeon | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
Sejong | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Chungnam | 2 | 3 | 0 | 0 | 1 | 2 | 1 | 0 | 1 | 1 | 5 | |
Chungbuk | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | |
Sex | Male | 0 | 3 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 6 |
Female | 2 | 2 | 0 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 1 | |
Age | 40–59 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
60–74 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
>75 | 2 | 3 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 1 | 7 | |
Mean | 79.5 | 69.4 | - | - | 88.0 | 81.0 | 47.0 | - | 79.0 | 78.0 | 82.4 | |
Cause of Death | Scrub typhus | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
Sepsis | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | |
Respiratory Failure | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | |
Multiple Organ Failure | 1 | 1 | 0 | 0 | 1 | 3 | 1 | 0 | 0 | 1 | 0 | |
Day from Symptom to Death | 1–6 | 22 * | - | - | 4 | 1–14 | 10 | - | 2 | 4 | 1–15 |
Population | Number of Farmer | Over 60 Years | Average Age | Average Age of Case | |
---|---|---|---|---|---|
Scrub Typhus | 0.712 ** | 0.776 ** | 0.635 ** | 0.306 * | −0.105 |
Reinfection | 0.476 ** | 0.39 3 * | 0.553 ** | 0.447 ** | 0.141 |
Other Disease *** | 0.477 ** | 0.470 ** | 0.638 ** | 0.601 ** | 0.396 ** |
Death | 0.431 ** | 0.530 ** | 0.503 ** | 0.402 ** | 0.220 |
Univariate | 2012–2014 | 2015–2017 | 2018–2020 | 2021–2022 |
---|---|---|---|---|
Region | ||||
Daejeon | ref. | ref. | ref. | ref. |
Sejong | 1.682 ** (1.451–1.949) | 1.408 ** (1.199–1.653) | 1.139 (0.902–1.439) | 1.171 (0.914–1.500) |
Chungnam | 1.254 ** (1.172–1.342) | 2.119 ** (1.966–2.284) | 2.458 ** (2.206–2.737) | 2.087 ** (1.849–2.356) |
Chungbuk | 0.670 ** (0.671–0.728) | 0.664 ** (0.602–0.733) | 0.668 ** (0.579–0.771) | 0.546 ** (0.462–0.645) |
Sex | ||||
Male | ref. | ref. | ref. | ref. |
Female | 1.443 ** (1.363–1.528) | 1.295 ** (1.222–1.371) | 1.424 ** (1.314–1.544) | 1.310 * (1.193–1.439) |
Age | ||||
0–12 | ref. | ref. | ref. | ref. |
13–18 | 1.051 (0.720–1.535) | 1.083 (0.694–1.690) | 0.983 (0.421–2.296) | 1.643 (0.634–4.258) |
19–39 | 2.028 ** (1.563–2.632) | 2.138 ** (1.586–2.882) | 2.866 ** (1.694–4.851) | 2.921 * (1.452–5.877) |
40–59 | 9.224 ** (4.81–10.309) | 9.708 ** (7.357–12.808) | 12.703 ** (7.728–20.881) | 11.552 ** (5.954–22.413) |
60–75 | 29.947 ** (22.769–36.803) | 33.244 ** (25.240–43.786) | 47.060 ** (28.720–77.110) | 51.661 ** (12.897–206.938) |
>75 | 31.968 ** (25.055–40.788) | 41.861 ** (31.718–55.246) | 71.694 ** (43.704–117.610) | 92.737 ** (48.327–179.067) |
Univariate | Multivariate | |||||||
---|---|---|---|---|---|---|---|---|
β | RR * | (95% CI) | P | β | RR * | (95% CI) | P | |
Region | ||||||||
Daejeon | ref. | 1.000 | ref. | 1.000 | ||||
Sejong | 0.074 | 1.077 | 0.113 | 0.983–1.180 | 0.287 | 1.332 | <0.01 | 1.216–1.460 |
Chungnam | 0.754 | 2.125 | <0.01 | 2.037–2.216 | 0.579 | 1.785 | <0.01 | 1.711–1.862 |
Chungbuk | −0.283 | 0.753 | <0.01 | 0.713–0.796 | −0.431 | 0.650 | <0.01 | 0.616–0.687 |
Sex | ||||||||
Male | ref. | 1.000 | ref. | 1.000 | ||||
Female | 0.479 | 1.614 | <0.01 | 1.561–1.669 | 0.314 | 1.368 | <0.01 | 1.323–1.415 |
Age | ||||||||
0–12 | ref. | 1.000 | ref. | 1.000 | ||||
13–18 | 0.104 | 1.110 | 0.434 | 0.854–1.442 | 0.100 | 1.105 | 0.456 | 0.850–1.435 |
19–39 | 0.769 | 2.157 | <0.01 | 1.806–2.576 | 0.795 | 2.214 | <0.01 | 1.854–2.644 |
40–59 | 2.252 | 9.506 | <0.01 | 8.058–11.216 | 2.291 | 9.885 | <0.01 | 8.378–11.662 |
60–75 | 3.460 | 31.827 | <0.01 | 27.006–37.508 | 3.523 | 33.811 | <0.01 | 28.748–39.931 |
>75 | 3.822 | 45.693 | <0.01 | 38.374–53.903 | 3.806 | 44.986 | <0.01 | 38.128–53.077 |
Year | ||||||||
2012 | ref. | 1.000 | ref. | 1.000 | ||||
2013 | 0.192 | 1.211 | <0.01 | 1.135–1.293 | 0.171 | 1.187 | <0.01 | 1.112–1.267 |
2014 | –0.154 | 0.857 | <0.01 | 0.798–0.920 | –0.199 | 0.820 | <0.01 | 0.764–0.880 |
2015 | –0.175 | 0.840 | <0.01 | 0.782–0.902 | –0.244 | 0.784 | <0.01 | 0.730–0.842 |
2016 | –0.036 | 0.964 | 0.299 | 0.900–1.033 | –0.129 | 0.879 | <0.01 | 0.821–0.942 |
2017 | –0.078 | 1.081 | <0.01 | 1.012–1.156 | –0.041 | 0.960 | 0.224 | 0.898–1.026 |
2018 | –0.271 | 0.762 | <0.01 | 0.709–0.820 | –0.415 | 0.660 | <0.01 | 0.614–0.710 |
2019 | –0.952 | 0.386 | <0.01 | 0.353–0.422 | –1.125 | 0.325 | <0.01 | 0.297–0.355 |
2020 | –1.090 | 0.336 | <0.01 | 0.306–0.369 | –1.295 | 0.274 | <0.01 | 0.249–0.301 |
2021 | –0.672 | 0.511 | <0.01 | 0.471–0.554 | –0.905 | 0.405 | <0.01 | 0.373–0.439 |
2022 | –0.569 | 0.566 | <0.01 | 0.523–0.613 | –0.828 | 0.437 | <0.01 | 0.404–0.473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Park, G.; Kim, Y. Incidence of Scrub Typhus according to Changes in Geographic and Demographic Characteristic in the Chungcheong Region of Korea. Trop. Med. Infect. Dis. 2024, 9, 147. https://doi.org/10.3390/tropicalmed9070147
Yang S, Park G, Kim Y. Incidence of Scrub Typhus according to Changes in Geographic and Demographic Characteristic in the Chungcheong Region of Korea. Tropical Medicine and Infectious Disease. 2024; 9(7):147. https://doi.org/10.3390/tropicalmed9070147
Chicago/Turabian StyleYang, Sungchan, Gemma Park, and Yuna Kim. 2024. "Incidence of Scrub Typhus according to Changes in Geographic and Demographic Characteristic in the Chungcheong Region of Korea" Tropical Medicine and Infectious Disease 9, no. 7: 147. https://doi.org/10.3390/tropicalmed9070147
APA StyleYang, S., Park, G., & Kim, Y. (2024). Incidence of Scrub Typhus according to Changes in Geographic and Demographic Characteristic in the Chungcheong Region of Korea. Tropical Medicine and Infectious Disease, 9(7), 147. https://doi.org/10.3390/tropicalmed9070147