Nociception in Chicken Embryos, Part III: Analysis of Movements before and after Application of a Noxious Stimulus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Incubation
2.2. Preparation Process
2.3. Experimental Setup
2.4. Analyses: Hardware, Software and Statistical Analyses
2.5. DeepLabCut
2.5.1. Visualization of the Data Clusters
- Beak;
- Head;
- Limbs;
- Stationary points on the egg, the Desmarres lid retractor, and the wire loop (for ED9) were used as reference controls.
Distance between the Upper and Lower Beak
Angle between the Upper and Lower Beak
Movement
2.5.2. Analysis
2.6. Manual Observation
- Beak Shift—a small horizontal shift of the upper and lower beaks against each other;
- Mandibulation—a small vertical opening of the beak, often executed several times, and reminiscent of a chewing movement;
- Beak Opening—single, swift, vertical opening of the beak;
- Wide Beak Opening—single, wide, vertical opening of the beak, accompanied by a characteristic tongue movement.
3. Results
3.1. Beak Movements in Response to a Noxious Stimulus
3.2. Head Movements in Response to a Noxious Stimulus
3.3. Limb Movements in Response to a Noxious Stimulus
3.4. Characterization of Beak Movements in Response to a Noxious Stimulus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livingston, A. Pain and analgesia in domestic animals. In Comparative and Veterinary Pharmacology, 1st ed.; Cunningham, F., Elliott, J., Lees, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 159–189. [Google Scholar] [CrossRef]
- Gentle, M.J. Pain in birds. Anim. Welf. 1992, 1, 235–247. [Google Scholar] [CrossRef]
- Paul-Murphy, J.R.; Hawkins, M. Bird-specific considerations: Recognizing pain behavior in pet birds. In Handbook of Veterinary Pain Management, 3rd ed.; Gaynor, J.S., Muir, W.W., Eds.; Elsevier Mosby: St. Louis, MO, USA, 2014; pp. 536–554. [Google Scholar] [CrossRef]
- Douglas, J.M.; Guzman, D.S.-M.; Paul-Murphy, J.R. Pain in birds: The anatomical and physiological basis. Vet. Clin. N. Am. Exot. Anim. Pract. 2018, 21, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Julius, D.; Basbaum, A.I. Molecular mechanisms of nociception. Nature 2001, 413, 203–210. [Google Scholar] [CrossRef]
- Zimmermann, M. Ethical considerations in relation to pain in animal experimentation. Acta Physiol. Scandinavica. Suppl. 1986, 554, 221–233. [Google Scholar]
- Korbel, R.; Lierz, M. Vögel. In Anästhesie und Analgesie beim Klein- und Heimtier mit Exoten, Labortieren, Vögeln, Reptilien, Amphibien und Fischen, 2nd ed.; Erhardt, W., Baumgartner, C., Haberstroh, J., Eds.; Schattauer GmbH: Stuttgart, Germany, 2012; pp. 790–834. [Google Scholar]
- Mikoni, N.A.; Guzman, D.S.-M.; Paul-Murphy, J. Pain recognition and assessment in birds. Vet. Clin. N. Am. Exot. Anim. Pract. 2023, 26, 65–81. [Google Scholar] [CrossRef]
- Mikoni, N.A.; Guzman, D.S.-M.; Fausak, E.; Paul-Murphy, J. Recognition and assessment of pain-related behaviors in avian species: An integrative review. J. Avian Med. Surg. 2022, 36, 153–172. [Google Scholar] [CrossRef]
- Gentle, M.J. Pain issues in poultry. Appl. Anim. Behav. Sci. 2011, 135, 252–258. [Google Scholar] [CrossRef]
- Hamburger, V.; Balaban, M. Observations and experiments on spontaneous rhythmical behavior in the chick embryo. Dev. Biol. 1963, 6, 533–545. [Google Scholar] [CrossRef]
- Hamburger, V.; Balaban, M.; Oppenheim, R.; Wenger, E. Periodic motility of normal and spinal chick embryos between 8 and 17 days of incubation. J. Exp. Zool. 1965, 159, 1–13. [Google Scholar] [CrossRef]
- Hamburger, V.; Oppenheim, R. Prehatching motility and hatching behavior in the chick. J. Exp. Zool. 1967, 166, 171–203. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, V.; Wenger, E.; Oppenheim, R. Motility in the chick embryo in the absence of sensory input. J. Exp. Zool. 1966, 162, 133–159. [Google Scholar] [CrossRef]
- Peters, J.J.; Vonderahe, A.R.; Powers, T.H. The functional chronology in developing chick nervous system. J. Exp. Zool. 1956, 133, 505–518. [Google Scholar] [CrossRef]
- Eide, A.L.; Glover, J.C. Developmental dynamics of functionally specific primary sensory afferent projections in the chicken embryo. Anat. Embryol. 1997, 195, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Eide, A.L.; Glover, J.C. Development of the longitudinal projection patterns of lumbar primary sensory afferents in the chicken embryo. J. Comp. Neurol. 1995, 353, 247–259. [Google Scholar] [CrossRef]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef]
- Mathis, A.; Warren, R. On the inference speed and video-compression robustness of DeepLabCut. bioRxiv 2018. [Google Scholar] [CrossRef]
- Nath, T.; Mathis, A.; Chen, A.C.; Patel, A.; Bethge, M.; Mathis, M.W. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 2019, 14, 2152–2176. [Google Scholar] [CrossRef]
- Weiss, L.; Saller, A.M.; Werner, J.; Süß, S.C.; Reiser, J.; Kollmansperger, S.; Anders, M.; Potschka, H.; Fenzl, T.; Schusser, B.; et al. Nociception in Chicken Embryos, Part I: Analysis of Cardiovascular Responses to a Mechanical Noxious Stimulus. Animals 2023, 13, 2710. [Google Scholar] [CrossRef]
- Kollmansperger, S.; Anders, M.; Werner, J.; Saller, A.M.; Weiss, L.; Süß, S.C.; Reiser, J.; Schneider, G.; Schusser, B.; Baumgartner, C.; et al. Nociception in Chicken Embryos, Part II: Embryonal Development of Electroencephalic Neuronal Activity In Ovo as a Prerequisite for Nociception. Animals 2023, 13, 2839. [Google Scholar] [CrossRef]
- Spurlin, J., III; Lwigale, P. A technique to increase accessibility to late-stage chick embryos for in ovo manipulations. Dev. Dyn. 2013, 242, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Suzuki, M.; Ogawa, A.; Munechika, I.; Murata, K.; Mizuno, S. Identification of the sex of a wide range of carinatae birds by PCR using primer sets selected from chicken EE0.6 and its related sequences. J. Hered. 2001, 92, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Insafutdinov, E.; Pishchulin, L.; Andres, B.; Andriluka, M.; Schiele, B. DeeperCut: A deeper, stronger, and faster multi-person pose estimation model. In Proceedings of the ECCV (European Conference on Computer Vision), Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Mathis, M.W.; Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 2020, 60, 1–11. [Google Scholar] [CrossRef]
- von Ziegler, L.; Sturman, O.; Bohacek, J. Big behavior: Challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology 2021, 46, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Hardin, A.; Schlupp, I. Using machine learning and DeepLabCut in animal behavior. Acta Ethol. 2022, 25, 125–133. [Google Scholar] [CrossRef]
- Henke, J.; Tacke, S.; Erhardt, W. Analgesie. In Anästhesie und Analgesie beim Klein- und Heimtier mit Exoten, Labortieren, Vögeln, Reptilien, Amphibien und Fischen, 2nd ed.; Erhardt, W., Baumgartner, C., Haberstroh, J., Eds.; Schattauer GmbH: Stuttgart, Germany, 2012; pp. 383–431. [Google Scholar]
- Kuenzel, W.J. Neurobiological basis of sensory perception: Welfare implications of beak trimming. Poult. Sci. 2007, 86, 1273–1282. [Google Scholar] [CrossRef]
- Chumak, V.I. Dinamika reflektomykh reaktsii i vklyuchenie retseptornykh apparatov u embriona kuritsy (Dynamics of reflex reactions and initiation of receptor systems in the chick embryo). In Voprosy Fiziologii i Patologii Tsentral’noi Nervnoi Sistemy Cheloveka i Zhivotnykli v Ontogeneze; Sbornik: Moscow, Russia, 1961; pp. 63–68. [Google Scholar]
- Antognini, J.F.; Carstens, E. In vivo characterization of clinical anaesthesia and its components. Br. J. Anaesth. 2002, 89, 156–166. [Google Scholar] [CrossRef]
- Diener, M.; Gerstberger, R. Zentrales Nervensystem. In Physiologie der Haustiere, 5th ed.; von Engelhardt, W., Breves, G., Diener, M., Gäbel, G., Eds.; Enke: Stuttgart, Germany, 2015; pp. 131–145. [Google Scholar]
- Willis, W.D.; Westlund, K.N. Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 1997, 14, 2–31. [Google Scholar] [CrossRef]
- Diesch, T.J.; Mellor, D.J.; Johnson, C.B.; Lentle, R.G. Responsiveness to painful stimuli in anaesthetised newborn and young animals of varying neurological maturity (wallaby joeys, rat pups and lambs). In Proceedings of the AATEX (World Congress on Alternatives & Animal Use in the Life Sciences), Tokyo, Japan, 21–25 August 2007. [Google Scholar]
- Mackie, N.; McKeegan, D.E.F. Behavioural responses of broiler chickens during low atmospheric pressure stunning. Appl. Anim. Behav. Sci. 2016, 174, 90–98. [Google Scholar] [CrossRef]
- Glatz, P.C.; Murphy, L.B.; Preston, A.P. Analgesic therapy of beak-trimmed chickens. Aust. Vet. J. 1992, 69, 18. [Google Scholar] [CrossRef]
- Hocking, P.M.; Gentle, M.J.; Bernard, R.; Dunn, L.N. Evaluation of a protocol for determining the effectiveness of pretreatment with local analgesics for reducing experimentally induced articular pain in domestic fowl. Res. Vet. Sci. 1997, 63, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Paul-Murphy, J.; Ludders, J.W. Avian analgesia. Vet. Clin. N. Am. Exot. Anim. Pract. 2001, 4, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Khamisabadi, A.; Kazemi-Darabadi, S.; Akbari, G. Comparison of anesthetic efficacy of lidocaine and bupivacaine in spinal anesthesia in chickens. J. Avian Med. Surg. 2021, 35, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, J.P.; Cruz, M.L.; Mendes, G.M.; Marucio, R.L.; Riccó, C.H.; Campagnol, D. Assessment of brachial plexus blockade in chickens by an axillary approach. Vet. Anaesth. Analg. 2008, 35, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Binshtok, A.M.; Bean, B.P.; Woolf, C.J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 2007, 449, 607–610. [Google Scholar] [CrossRef]
- Provine, R.R.; Sharma, S.; Sandel, T.; Hamburger, V. Electrical activity in the spinal cord of the chick embryo, in situ. Proc. Natl. Acad. Sci. USA 1970, 65, 508–515. [Google Scholar] [CrossRef]
- Provine, R.R. Development of between-limb movement synchronization in the chick embryo. Dev. Psychobiol. 1980, 13, 151–163. [Google Scholar] [CrossRef]
- Sharma, S.; Provine, R.R.; Hamburger, V.; Sandel, T. Unit activity in the isolated spinal cord of chick embryo, in situ. Proc. Natl. Acad. Sci. USA 1970, 66, 40–47. [Google Scholar] [CrossRef]
- Bekoff, A. Ontogeny of leg motor output in the chick embryo: A neural analysis. Brain Res. 1976, 106, 271–291. [Google Scholar] [CrossRef]
- Bradley, N.S.; Solanki, D.; Zhao, D. Limb movements during embryonic development in the chick: Evidence for a continuum in limb motor control antecedent to locomotion. J. Neurophysiol. 2005, 94, 4401–4411. [Google Scholar] [CrossRef]
- Wu, K.-C.; Streicher, J.; Lee, M.; Hall, B.; Müller, G. Role of motility in embryonic development I: Embryo movements and amnion contractions in the chick and the influence of illumination. J. Exp. Zool. 2001, 291, 186–194. [Google Scholar] [CrossRef] [PubMed]
ED9 | ED12 | ED13 | ED14 | ED15 | ED16 | ED17 | ED18 | ED18 w/ Lido | |
---|---|---|---|---|---|---|---|---|---|
Amount of embryos (n) | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 5 |
Sex male/female | 5/5 | 3/7 | 5/5 | 9/7 | 7/9 | 7/8 | 7/9 | 7/9 | 2/3 |
ED9 n = 10 | ED12 n = 10 | ED13 n = 10 | ED14 n = 16 | ED15 n = 16 | ED16 n = 16 | ED17 n = 16 | ED18 n = 16 | ED18 w/Lido n = 5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amount of embryos [%] | Touch | Pinch | Touch | Pinch | Touch | Pinch | Touch | Pinch | Touch | Pinch | Touch | Pinch | Touch | Pinch | Touch | Pinch | Touch | Pinch | |
Beak Shift | Baseline | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 30.0 | 18.8 | 25.0 | 31.3 | 0.0 | 18.8 | 25.0 | 25.0 | 31.3 | 25.0 | 6.3 | 40.0 | 40.0 |
Post | 0.0 | 0.0 | 30.0 | 30.0 | 20.0 | 20.0 | 18.8 | 31.3 | 31.3 | 25.0 | 18.8 | 18.8 | 25.0 | 18.8 | 31.3 | 6.3 | 20.0 | 60.0 | |
Mandibulation | Baseline | 20.0 | 30.0 | 40.0 | 30.0 | 10.0 | 50.0 | 12.5 | 12.5 | 37.5 | 12.5 | 62.5 | 25.0 | 43.8 | 37.5 | 31.3 | 37.5 | 80.0 | 80.0 |
Post | 30.0 | 20.0 | 50.0 | 60.0 | 50.0 | 40.0 | 56.3 | 56.3 | 62.5 | 81.3 | 68.8 | 93.8 | 62.5 | 87.5 | 68.8 | 87.5 | 80.0 | 60.0 | |
Beak Opening | Baseline | 10.0 | 0.0 | 10.0 | 10.0 | 10.0 | 10.0 | 6.3 | 0.0 | 0.0 | 6.3 | 0.0 | 6.3 | 6.3 | 6.3 | 0.0 | 0.0 | 0.0 | 20.0 |
Post | 0.0 | 0.0 | 00.0 | 10.0 | 10.0 | 20.0 | 0.0 | 12.5 | 12.5 | 31.3 | 31.3 | 87.5 | 18.8 | 50.0 | 18.8 | 62.5 | 0.0 | 20.0 | |
Wide Beak Opening | Baseline | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 6.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 |
Post | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.3 | 12.5 | 18.8 | 6.3 | 25.0 | 0.0 | 81.3 | 0.0 | 87.5 | 0.0 | 40.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Süß, S.C.; Werner, J.; Saller, A.M.; Weiss, L.; Reiser, J.; Ondracek, J.M.; Zablotski, Y.; Kollmansperger, S.; Anders, M.; Potschka, H.; et al. Nociception in Chicken Embryos, Part III: Analysis of Movements before and after Application of a Noxious Stimulus. Animals 2023, 13, 2859. https://doi.org/10.3390/ani13182859
Süß SC, Werner J, Saller AM, Weiss L, Reiser J, Ondracek JM, Zablotski Y, Kollmansperger S, Anders M, Potschka H, et al. Nociception in Chicken Embryos, Part III: Analysis of Movements before and after Application of a Noxious Stimulus. Animals. 2023; 13(18):2859. https://doi.org/10.3390/ani13182859
Chicago/Turabian StyleSüß, Stephanie C., Julia Werner, Anna M. Saller, Larissa Weiss, Judith Reiser, Janie M. Ondracek, Yury Zablotski, Sandra Kollmansperger, Malte Anders, Heidrun Potschka, and et al. 2023. "Nociception in Chicken Embryos, Part III: Analysis of Movements before and after Application of a Noxious Stimulus" Animals 13, no. 18: 2859. https://doi.org/10.3390/ani13182859
APA StyleSüß, S. C., Werner, J., Saller, A. M., Weiss, L., Reiser, J., Ondracek, J. M., Zablotski, Y., Kollmansperger, S., Anders, M., Potschka, H., Schusser, B., Fenzl, T., & Baumgartner, C. (2023). Nociception in Chicken Embryos, Part III: Analysis of Movements before and after Application of a Noxious Stimulus. Animals, 13(18), 2859. https://doi.org/10.3390/ani13182859