Analyzing Trends in Digital Transformation Korean Social Media Data: A Semantic Network Analysis
Abstract
:1. Introduction
2. Related Studies
2.1. Digital Transformation
2.2. Big Data and Semantic Network Analysis
3. Method
3.1. Data Collection
3.2. Data Extraction and Preprocessing
3.3. Semantic Network Analysis and Visualization
- Degree centrality, which calculates the number of nodes connected to a specific node, indicating the node’s activity or popularity within the network;
- Betweenness centrality, measuring a node’s mediating role within the network, indicating its importance in facilitating information flow between other nodes;
- Closeness centrality, calculating the inverse of the average distance to all other nodes, indicating how close a node is to all other nodes in the network, which can suggest its accessibility or centrality in the network’s communication pathways;
- Eigenvector centrality, a measure of a node’s influence in the network, indicating not just how many connections a node has but also how important those connections are.
4. Results
4.1. The Frequencies of Keywords Related to Digital Transformation
4.2. Analysis of Centralities of Keywords Related to Digital Transform
4.3. CONCOR Analysis and Visualization
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reis, J.; Amorim, M.; Melão, N. Digital transformation: A literature review and guidelines for future research. Trends Adv. Inf. Syst. Technol. 2018, 1, 411–421. [Google Scholar]
- Lima, J.V.V.; Santos, W.B.; Rodrigues, C.; Alencar, F. Digital Transformation in the Public Sector: Preliminary Results of a Tertiary Literature Review. In Proceedings of the 2023 18th Iberian Conference on Information Systems and Technologies (CISTI), Aveiro, Portugal, 20–23 June 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Vaska, S.; Massaro, M.; Bagarotto, E.M.; Mas, F.D. The digital transformation of business model innovation: A structured literature review. Front. Psychol. 2021, 11, 539363. [Google Scholar] [CrossRef] [PubMed]
- Dopfer, M.; Fallahi, S.; Kirchberger, M.; Gassmann, O. Adapt and strive: How ventures under resource constraints create value through business model adaptations. Creat. Innov. Manag. 2017, 26, 233–246. [Google Scholar] [CrossRef]
- Peñarroya-Farell, M.; Miralles, F. Business model dynamics from interaction with open innovation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 81. [Google Scholar] [CrossRef]
- Schwertner, K. Digital transformation of business. Trakia J. Sci. 2017, 15, 388–393. [Google Scholar] [CrossRef]
- Fronzetti Colladon, A.; Grassi, S.; Ravazzolo, F.; Violante, F. Forecasting financial markets with semantic network analysis in the COVID-19 crisis. J. Forecast. 2023, 42, 1187–1204. [Google Scholar] [CrossRef]
- Luo, C.; Chen, A.; Cui, B.; Liao, W. Exploring public perceptions of the COVID-19 vaccine online from a cultural perspective: Semantic network analysis of two social media platforms in the United States and China. Telemat. Inform. 2021, 65, 101712. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Fu, H.; Wang, P.; Chen, C.; Xiong, J. # Climatechange vs.# Globalwarming: Characterizing two competing climate discourses on Twitter with semantic network and temporal analyses. Int. J. Environ. Res. Public Health 2020, 17, 1062. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.; Kruschwitz, N.; Bonnet, D.; Welch, M. Embracing digital technology: A new strategic imperative. MIT Sloan Manag. Rev. 2014, 55, 1. [Google Scholar]
- Westerman, G.; Calméjane, C.; Bonnet, D.; Ferraris, P.; McAfee, A. Digital Transformation: A roadmap for billion-dollar organizations. MIT Cent. Digit. Bus. Capgemini Consult. 2011, 1, 1–68. [Google Scholar]
- Stolterman, E.; Fors, A.C. Information technology and the good life. Inf. Syst. Res. Relev. Theory Inf. Pract. 2004, 143, 687–692. [Google Scholar]
- Besson, P.; Rowe, F. Strategizing information systems-enabled organizational transformation: A transdisciplinary review and new directions. J. Strateg. Inf. Syst. 2012, 21, 103–124. [Google Scholar] [CrossRef]
- Karimi, J.; Walter, Z. The role of dynamic capabilities in responding to digital disruption: A factor-based study of the newspaper industry. J. Manag. Inf. Syst. 2015, 32, 39–81. [Google Scholar] [CrossRef]
- Cha, K.J.; Hwang, T.; Gregor, S. An integrative model of IT-enabled organizational transformation: A multiple case study. Manag. Decis. 2015, 53, 1755–1770. [Google Scholar] [CrossRef]
- Resca, A.; Za, S.; Spagnoletti, P. Digital platforms as sources for organizational and strategic transformation: A case study of the Midblue project. J. Theor. Appl. Electron. Commer. Res. 2013, 8, 71–84. [Google Scholar] [CrossRef]
- Llopis, J.; Gonzalez, M.R.; Gasco, J.L. Transforming the firm for the digital era: An organizational effort towards an E-culture. Hum. Syst. Manag. 2004, 23, 213–225. [Google Scholar] [CrossRef]
- Nadkarni, S.; Prügl, R. Digital transformation: A review, synthesis and opportunities for future research. Manag. Rev. Q. 2021, 71, 233–341. [Google Scholar] [CrossRef]
- Gebauer, H.; Paiola, M.; Saccani, N.; Rapaccini, M. Digital servitization: Crossing the perspectives of digitization and servitization. Ind. Mark. Manag. 2021, 93, 382–388. [Google Scholar] [CrossRef]
- Coreynen, W.; Matthyssens, P.; Vanderstraeten, J.; van Witteloostuijn, A. Unravelling the internal and external drivers of digital servitization: A dynamic capabilities and contingency perspective on firm strategy. Ind. Mark. Manag. 2020, 89, 265–277. [Google Scholar] [CrossRef]
- Paiola, M.; Gebauer, H. Internet of things technologies, digital servitization and business model innovation in BtoB manufacturing firms. Ind. Mark. Manag. 2020, 89, 245–264. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Chin, H.S.; Marasini, D.P.; Lee, D. Digital transformation trends in service industries. Serv. Bus. 2023, 17, 11–36. [Google Scholar] [CrossRef]
- Laney, D. 3D data management: Controlling data volume, velocity and variety. META Group Res. Note 2001, 6, 1. [Google Scholar]
- Kostakis, P.; Kargas, A. Big-Data Management: A Driver for Digital Transformation? Information 2021, 12, 411. [Google Scholar] [CrossRef]
- Bosilj, N.; Jurinjak, I. The role of knowledge management in mobile marketing. J. Inf. Organ. Sci. 2009, 33, 231–241. [Google Scholar]
- Fayyaz, Z.; Ebrahimian, M.; Nawara, D.; Ibrahim, A.; Kashef, R. Recommendation systems: Algorithms, challenges, metrics, and business opportunities. Appl. Sci. 2020, 10, 7748. [Google Scholar] [CrossRef]
- Almohsen, K.A.; Al-Jobori, H. Recommender systems in light of big data. Int. J. Electr. Comput. Eng. 2015, 5, 1553–1563. [Google Scholar] [CrossRef]
- Verma, J.P.; Patel, B.; Patel, A. Big data analysis: Recommendation system with Hadoop framework. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, India, 13–14 February 2015; IEEE: Piscataway Township, NJ, USA, 2015. [Google Scholar]
- Drieger, P. Semantic network analysis as a method for visual text analytics. Procedia-Soc. Behav. Sci. 2013, 79, 4–17. [Google Scholar] [CrossRef]
- Feldman, R.; Sanger, J. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Risch, J.; Kao, A.; Poteet, S.R.; Wu, J. Text visualization for visual text analytics. In Visual Data Mining: Theory, Techniques and Tools for Visual Analytics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 154–171. [Google Scholar]
- Berry, M.W.; Kogan, J. (Eds.) Text Mining: Applications and Theory; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Kim, E.J.; Kim, J.Y. Exploring the Online News Trends of the Metaverse in South Korea: A Data-Mining-Driven Semantic Network Analysis. Sustainability 2023, 15, 16279. [Google Scholar] [CrossRef]
- Kang, G.J.; Ewing-Nelson, S.R.; Mackey, L.; Schlitt, J.T.; Marathe, A.; Abbas, K.M.; Swarup, S. Semantic network analysis of vaccine sentiment in online social media. Vaccine 2017, 35, 3621–3638. [Google Scholar] [CrossRef]
- Christensen, A.P.; Kenett, Y.N. Semantic network analysis (SemNA): A tutorial on preprocessing, estimating, and analyzing semantic networks. Psychol. Methods 2021, 28, 860–879. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.M.; Loftus, E.F. A spreading-activation theory of semantic processing. Psychol. Rev. 1975, 82, 407. [Google Scholar] [CrossRef]
- NAVER. Available online: https://www.naver.com (accessed on 15 February 2024).
- DAUM. Available online: https://www.daum.net (accessed on 15 February 2024).
- Park, E.L.; Cho, S. KoNLPy: Korean natural language processing in Python. In Proceedings of the 26th Annual Conference on Human & Cognitive Language Technology, Chuncheon, Korea, 10–11 October 2014; Volume 6. [Google Scholar]
- Leskovec, J.; Rajaraman, A.; Ullman, J. Recommender systems. In Mining of Massive Datasets; Springer: Berlin/Heidelberg, Germany, 2011; p. 327. [Google Scholar]
- De Boom, C.; Van Canneyt, S.; Bohez, S.; Demeester, T.; Dhoedt, B. Learning semantic similarity for very short texts. In Proceedings of the 2015 IEEE International Conference on Data Mining WORKSHOP (icdmw), Atlantic City, NJ, USA, 14–17 November 2015; IEEE: Piscataway Township, NJ, USA, 2015. [Google Scholar]
- Hong, Y. How the discussion on a contested technology in Twitter changes: Semantic network analysis of tweets about cryptocurrency and blockchain technology. In Proceedings of the 22nd Biennial Conference of the International Telecommunications Society (ITS), Beyond the Boundaries: Challenges for Business, Policy and Society, Seoul, Republic of Korea, 24–27 June 2018. [Google Scholar]
- Borgatti, S.P. NetDraw Software for Network Visualization; Analytic Technologies: Lexington, KY, USA, 2002. [Google Scholar]
- Hagberg, A.; Swart, P.; Chult, D.S. Exploring Network Structure, Dynamics, and Function Using NetworkX. No. LA-UR-08-05495; LA-UR-08-5495; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2008. [Google Scholar]
- Tabassum, S.; Pereira, F.S.F.; Fernandes, S.; Gama, J. Social network analysis: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1256. [Google Scholar] [CrossRef]
- Breiger, R.L.; Boorman, S.A.; Arabie, P. An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling. J. Math. Psychol. 1975, 12, 328–383. [Google Scholar] [CrossRef]
- Kim, N.R.; Hong, S.G. Text mining for the evaluation of public services: The case of a public bike-sharing system. Serv. Bus. 2020, 14, 315–331. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002; Volume 6, pp. 12–15. [Google Scholar]
- Truong, T.-C.; Diep, Q.B. Technological Spotlights of Digital Transformation in Tertiary Education. IEEE Access 2023, 11, 40954–40966. [Google Scholar] [CrossRef]
- Gao, D.; Yan, Z.; Zhou, X.; Mo, X. Smarter and prosperous: Digital transformation and enterprise performance. Systems 2023, 11, 329. [Google Scholar] [CrossRef]
- Neethirajan, S. Artificial intelligence and sensor technologies in dairy livestock export: Charting a digital transformation. Sensors 2023, 23, 7045. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Liang, Z.; Ruan, P. Evaluation on the impact of digital transformation on the economic resilience of the energy industry in the context of artificial intelligence. Energy Rep. 2023, 9, 785–792. [Google Scholar] [CrossRef]
- Bahoo, S.; Cucculelli, M.; Qamar, D. Artificial intelligence and corporate innovation: A review and research agenda. Technol. Forecast. Soc. Chang. 2023, 188, 122264. [Google Scholar] [CrossRef]
- Mariani, M.M.; Machado, I.; Magrelli, V.; Dwivedi, Y.K. Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation 2023, 122, 102623. [Google Scholar] [CrossRef]
- Reim, W.; Åström, J.; Eriksson, O. Implementation of artificial intelligence (AI): A roadmap for business model innovation. AI 2020, 1, 11. [Google Scholar] [CrossRef]
- Mukul, E.; Büyüközkan, G. Digital transformation in education: A systematic review of education 4.0. Technol. Forecast. Soc. Chang. 2023, 194, 122664. [Google Scholar] [CrossRef]
- Benavides, L.M.C.; Arias, J.A.T.; Serna, M.D.A.; Bedoya, J.W.B.; Burgos, D. Digital transformation in higher education institutions: A systematic literature review. Sensors 2020, 20, 3291. [Google Scholar] [CrossRef] [PubMed]
- Amankwah-Amoah, J.; Khan, Z.; Wood, G.; Knight, G. COVID-19 and digitalization: The great acceleration. J. Bus. Res. 2021, 136, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Kutnjak, A. Covid-19 accelerates digital transformation in industries: Challenges, issues, barriers and problems in transformation. IEEE Access 2021, 9, 79373–79388. [Google Scholar] [CrossRef]
- Kraus, N.; Kraus, K. Digitalization of business processes of enterprises of the ecosystem of Industry 4.0: Virtual-real aspect of economic growth reserves. WSEAS Trans. Bus. Econ. 2021, 18, 569–580. [Google Scholar] [CrossRef]
- Chen, C.-L.; Lin, Y.-C.; Chen, W.-H.; Chao, C.-F.; Pandia, H. Role of government to enhance digital transformation in small service business. Sustainability 2021, 13, 1028. [Google Scholar] [CrossRef]
- Tereszkiewicz, A. “I’m not sure what that means yet, but we’ll soon find out”—The discourse of newspaper live blogs. Stud. Linguist. Univ. Iagell. Cracoviensis 2014, 131, 299–319. [Google Scholar]
- Yul Kwon, O. A cultural analysis of South Korea′s economic prospects. Glob. Econ. Rev. 2005, 34, 213–231. [Google Scholar] [CrossRef]
- Chung, C.-S.; Choi, H.; Cho, Y. Analysis of digital governance transition in South Korea: Focusing on the leadership of the president for government Innovation. J. Open Innov. Technol. Mark. Complex. 2022, 8, 2. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.; Lee, J.S. The rise and fall of industrial clusters: Experience from the resilient transformation in South Korea. Ann. Reg. Sci. 2023, 71, 391–413. [Google Scholar] [CrossRef] [PubMed]
- Digital Transformation Poll Results. Available online: https://solferinoacademy.com/digital-transformation-messages-from-poll/ (accessed on 4 May 2022).
Rank | Keyword | Freq. | Rank | Keyword | Freq. |
---|---|---|---|---|---|
1 | Education | 2975 | 26 | Nation | 1137 |
2 | Innovation | 2643 | 27 | Strategy | 1068 |
3 | Corporation | 2437 | 28 | Cooperation | 1057 |
4 | Information | 2120 | 29 | New | 942 |
5 | Artificial Intelligence | 2093 | 30 | Smart | 937 |
6 | Project | 1955 | 31 | Human Resources | 852 |
7 | Data | 1942 | 32 | Operation | 831 |
8 | Future | 1830 | 33 | Citizens | 820 |
9 | Support | 1822 | 34 | Study | 791 |
10 | Government | 1816 | 35 | Student | 786 |
11 | Global | 1770 | 36 | Leading | 764 |
12 | Field | 1710 | 37 | Professor | 756 |
13 | Metaverse | 1644 | 38 | Competence | 745 |
14 | Policy | 1548 | 39 | Investment | 741 |
15 | Construction | 1502 | 40 | Training | 695 |
16 | Region | 1478 | 41 | Contents | 684 |
17 | Platform | 1460 | 42 | Institution | 668 |
18 | Promotion | 1458 | 43 | Tech | 657 |
19 | Era | 1444 | 44 | Bio | 646 |
20 | Center | 1394 | 45 | School | 639 |
21 | Service | 1363 | 46 | Finance | 544 |
22 | Economy | 1274 | 47 | Cloud | 543 |
23 | Development | 1267 | 48 | Infrastructure | 462 |
24 | Society | 1253 | 49 | Software | 439 |
25 | Plan | 1158 | 50 | Personal Information | 429 |
Rank | Keyword | Freq. | Rank | Keyword | Freq. |
---|---|---|---|---|---|
1 | Artificial Intelligence | 2975 | 26 | New | 1137 |
2 | Corporation | 2643 | 27 | System | 1068 |
3 | Education | 2437 | 28 | Society | 1057 |
4 | Data | 2120 | 29 | Government | 942 |
5 | Innovation | 2093 | 30 | Market | 937 |
6 | Era | 1955 | 31 | Nation | 852 |
7 | Metaverse | 1942 | 32 | Cloud | 831 |
8 | Project | 1830 | 33 | Region | 820 |
9 | Service | 1822 | 34 | Study | 791 |
10 | Field | 1816 | 35 | Professor | 786 |
11 | Support | 1770 | 36 | Citizens | 764 |
12 | Future | 1710 | 37 | Corona | 756 |
13 | Global | 1644 | 38 | Online | 745 |
14 | Change | 1548 | 39 | Space | 741 |
15 | Information | 1502 | 40 | Human Resources | 695 |
16 | Development | 1478 | 41 | Personal Information | 684 |
17 | Platform | 1460 | 42 | Business | 668 |
18 | Construction | 1458 | 43 | Finance | 657 |
19 | Center | 1444 | 44 | Big Data | 646 |
20 | Strategy | 1394 | 45 | Leading | 639 |
21 | Economy | 1363 | 46 | Research | 544 |
22 | Smart | 1274 | 47 | Infrastructure | 543 |
23 | Promotion | 1267 | 48 | Industrial Revolution | 462 |
24 | Plan | 1253 | 49 | Software | 439 |
25 | Policy | 1158 | 50 | Science and Technology | 429 |
Rank | Keyword | Cd 1 | Keyword | Cb 2 | Keyword | Cc 3 | Keyword | Ce 4 |
---|---|---|---|---|---|---|---|---|
1 | Innovation | 0.938776 | Data | 0.06154 | Innovation | 0.940408 | Innovation | 0.200111 |
2 | Education | 0.897959 | Education | 0.050155 | Education | 0.904239 | Artificial Intelligence | 0.195975 |
3 | Artificial Intelligence | 0.877551 | Innovation | 0.049585 | Artificial Intelligence | 0.887178 | Support | 0.194377 |
4 | Support | 0.877551 | Support | 0.035948 | Support | 0.887178 | Education | 0.192973 |
5 | Data | 0.857143 | Artificial Intelligence | 0.032176 | Data | 0.870748 | Corporation | 0.191475 |
6 | Corporation | 0.836735 | Corporation | 0.027202 | Corporation | 0.854917 | Data | 0.18877 |
7 | Global | 0.795918 | Global | 0.026213 | Global | 0.824919 | Global | 0.185881 |
8 | Project | 0.77551 | Government | 0.019029 | Project | 0.810697 | Future | 0.185531 |
9 | Future | 0.77551 | Future | 0.016818 | Future | 0.810697 | Project | 0.184892 |
10 | Government | 0.77551 | Project | 0.015426 | Government | 0.810697 | Field | 0.184361 |
11 | Information | 0.755102 | Information | 0.015374 | Information | 0.796956 | Government | 0.183366 |
12 | Field | 0.755102 | Metaverse | 0.015002 | Field | 0.796956 | Information | 0.18166 |
13 | Metaverse | 0.714286 | Policy | 0.013719 | Metaverse | 0.770826 | Promotion | 0.179538 |
14 | Policy | 0.714286 | Field | 0.01159 | Policy | 0.770826 | Policy | 0.176005 |
15 | Promotion | 0.714286 | Citizens | 0.011204 | Promotion | 0.770826 | Metaverse | 0.175198 |
16 | Construction | 0.693878 | Construction | 0.010303 | Construction | 0.758394 | Platform | 0.174759 |
17 | Platform | 0.693878 | Development | 0.009443 | Platform | 0.758394 | Center | 0.17228 |
18 | Service | 0.673469 | Platform | 0.008512 | Service | 0.746356 | Service | 0.172084 |
19 | Center | 0.653061 | Promotion | 0.007452 | Center | 0.734694 | Construction | 0.171971 |
20 | Development | 0.653061 | Service | 0.006708 | Development | 0.734694 | Nation | 0.170091 |
21 | Nation | 0.653061 | Society | 0.004792 | Nation | 0.734694 | Region | 0.166259 |
22 | Region | 0.632653 | Nation | 0.004159 | Region | 0.723391 | Society | 0.165359 |
23 | Society | 0.632653 | Region | 0.003406 | Society | 0.723391 | Economy | 0.164331 |
24 | Economy | 0.612245 | Center | 0.00286 | Economy | 0.71243 | Development | 0.163565 |
25 | Era | 0.591837 | Era | 0.001982 | Era | 0.701797 | Era | 0.159499 |
26 | Strategy | 0.571429 | Study | 0.001756 | Strategy | 0.691477 | Strategy | 0.156086 |
27 | Plan | 0.510204 | Economy | 0.001665 | Plan | 0.662259 | Plan | 0.141053 |
28 | Cooperation | 0.469388 | Human Resources | 0.001255 | Cooperation | 0.644115 | Cooperation | 0.13411 |
29 | New | 0.469388 | Strategy | 0.001233 | New | 0.644115 | New | 0.132824 |
30 | Citizens | 0.469388 | Leading | 0.001116 | Citizens | 0.644115 | Citizens | 0.127351 |
31 | Human Resources | 0.44898 | School | 0.001047 | Human Resources | 0.626939 | Human Resources | 0.122508 |
32 | Investment | 0.408163 | Student | 0.000984 | Investment | 0.61869 | Investment | 0.113464 |
33 | Smart | 0.367347 | Tech | 0.000834 | Smart | 0.602826 | Smart | 0.105321 |
34 | Operation | 0.326531 | Plan | 0.000646 | Operation | 0.587755 | Operation | 0.095075 |
35 | Bio | 0.326531 | Bio | 0.000354 | Bio | 0.587755 | Bio | 0.090109 |
36 | Leading | 0.265306 | Investment | 0.000338 | Leading | 0.566511 | Competence | 0.073346 |
37 | Study | 0.244898 | Training | 4.05 × 10−5 | Study | 0.559767 | Leading | 0.071322 |
38 | Professor | 0.244898 | New | 3.87 × 10−5 | Professor | 0.559767 | Contents | 0.07119 |
39 | Competence | 0.244898 | Cooperation | 3.15 × 10−5 | Competence | 0.559767 | Professor | 0.070857 |
40 | Contents | 0.244898 | Smart | 0 | Contents | 0.553181 | Training | 0.064338 |
41 | Student | 0.22449 | Operation | 0 | Student | 0.546749 | Study | 0.058304 |
42 | Training | 0.22449 | Professor | 0 | Training | 0.546749 | Student | 0.052909 |
43 | School | 0.204082 | Competence | 0 | School | 0.540464 | Institution | 0.049241 |
44 | Tech | 0.183673 | Contents | 0 | Institution | 0.534323 | Cloud | 0.048228 |
45 | Institution | 0.163265 | Institution | 0 | Tech | 0.534323 | School | 0.044269 |
46 | Cloud | 0.163265 | Finance | 0 | Cloud | 0.534323 | Infrastructure | 0.042801 |
47 | Infrastructure | 0.142857 | Cloud | 0 | Infrastructure | 0.528319 | Tech | 0.040939 |
48 | Finance | 0.081633 | Infrastructure | 0 | Finance | 0.511091 | Finance | 0.02403 |
49 | Personal Information | 0.040816 | Software | 0 | Personal Information | 0.470204 | Personal Information | 0.010226 |
50 | Software | 0 | Personal Information | 0 | Software | 0 | Software | 1.45 × 10−13 |
Rank | Keyword | Cd 1 | Keyword | Cb 2 | Keyword | Cc 3 | Keyword | Ce 4 |
---|---|---|---|---|---|---|---|---|
1 | Artificial Intelligence | 0.918367 | Artificial Intelligence | 0.092258 | Artificial Intelligence | 0.918802 | Artificial Intelligence | 0.193392 |
2 | Data | 0.877551 | Data | 0.041167 | Data | 0.881299 | Data | 0.192609 |
3 | Corporation | 0.857143 | Education | 0.031264 | Corporation | 0.863673 | Corporation | 0.191275 |
4 | Innovation | 0.816327 | Corporation | 0.028714 | Innovation | 0.830455 | Service | 0.18964 |
5 | Service | 0.816327 | Information | 0.018267 | Service | 0.830455 | Development | 0.189048 |
6 | Development | 0.816327 | Innovation | 0.017399 | Development | 0.830455 | Innovation | 0.18838 |
7 | Education | 0.795918 | Support | 0.017302 | Education | 0.814786 | Metaverse | 0.187632 |
8 | Metaverse | 0.795918 | Development | 0.014583 | Metaverse | 0.814786 | Construction | 0.186105 |
9 | Support | 0.795918 | Service | 0.013366 | Support | 0.814786 | Promotion | 0.186105 |
10 | Construction | 0.795918 | Construction | 0.012719 | Construction | 0.814786 | Support | 0.185267 |
11 | Promotion | 0.795918 | Promotion | 0.012719 | Promotion | 0.814786 | Project | 0.184539 |
12 | Project | 0.77551 | Metaverse | 0.010805 | Project | 0.799698 | Smart | 0.184539 |
13 | Smart | 0.77551 | Center | 0.009584 | Smart | 0.799698 | Education | 0.18388 |
14 | Field | 0.755102 | Project | 0.009436 | Field | 0.785158 | Field | 0.183307 |
15 | Center | 0.755102 | Smart | 0.009436 | Center | 0.785158 | Center | 0.18085 |
16 | Information | 0.734694 | Citizens | 0.008668 | Information | 0.771137 | Information | 0.175311 |
17 | Platform | 0.693878 | Strategy | 0.00794 | Platform | 0.744546 | Platform | 0.174807 |
18 | Strategy | 0.693878 | Field | 0.006863 | Strategy | 0.744546 | Strategy | 0.171625 |
19 | System | 0.693878 | Future | 0.005236 | System | 0.744546 | System | 0.171384 |
20 | Global | 0.653061 | System | 0.005218 | Global | 0.719728 | Global | 0.163418 |
21 | Future | 0.632653 | Global | 0.004499 | Future | 0.707929 | Plan | 0.159692 |
22 | Plan | 0.632653 | Plan | 0.003899 | Plan | 0.707929 | Future | 0.157281 |
23 | Era | 0.571429 | Platform | 0.003363 | Era | 0.674745 | Government | 0.151141 |
24 | Government | 0.571429 | Era | 0.002008 | Government | 0.674745 | Nation | 0.148339 |
25 | Citizens | 0.571429 | Government | 0.00083 | Citizens | 0.674745 | Era | 0.147639 |
26 | Nation | 0.55102 | Change | 0.000604 | Nation | 0.664364 | Citizens | 0.145619 |
27 | Policy | 0.530612 | Society | 0.000582 | Policy | 0.654298 | Policy | 0.143094 |
28 | Economy | 0.510204 | Economy | 0.000514 | Economy | 0.644532 | Economy | 0.137371 |
29 | Society | 0.489796 | Nation | 0.000448 | Society | 0.635054 | Cloud | 0.134165 |
30 | Cloud | 0.489796 | Policy | 0.000377 | Cloud | 0.635054 | Society | 0.130427 |
31 | Market | 0.469388 | Cloud | 0.000157 | Market | 0.62585 | Market | 0.129527 |
32 | Infrastructure | 0.44898 | Market | 7.91 × 10−5 | Infrastructure | 0.61691 | Infrastructure | 0.124915 |
33 | Online | 0.428571 | New | 0 | Online | 0.608221 | Online | 0.120143 |
34 | Leading | 0.408163 | Region | 0 | Leading | 0.599773 | Leading | 0.114433 |
35 | Change | 0.387755 | Study | 0 | Change | 0.591557 | Region | 0.104145 |
36 | Region | 0.367347 | Professor | 0 | Region | 0.583563 | Change | 0.101043 |
37 | Study | 0.326531 | Corona | 0 | Study | 0.568206 | Study | 0.094029 |
38 | Big Data | 0.285714 | Online | 0 | Big Data | 0.553637 | Big Data | 0.082636 |
39 | New | 0.244898 | Space | 0 | New | 0.539796 | Finance | 0.070776 |
40 | Corona | 0.244898 | Human Resources | 0 | Corona | 0.539796 | Corona | 0.070504 |
41 | Finance | 0.244898 | Personal Information | 0 | Finance | 0.539796 | New | 0.065627 |
42 | Space | 0.183673 | Business | 0 | Space | 0.520285 | Space | 0.051164 |
43 | Business | 0.102041 | Finance | 0 | Business | 0.496364 | Business | 0.029595 |
44 | Human Resources | 0.081633 | Big Data | 0 | Human Resources | 0.48521 | Human Resources | 0.023802 |
45 | Personal Information | 0.061224 | Leading | 0 | Professor | 0.474546 | Personal Information | 0.016215 |
46 | Professor | 0.040816 | Research | 0 | Personal Information | 0.469388 | Professor | 0.011912 |
47 | Research | 0.020408 | Infrastructure | 0 | Research | 0.469388 | Research | 0.006106 |
48 | Industrial Revolution | 0 | Industrial Revolution | 0 | Industrial Revolution | 0 | Industrial Revolution | 3.72 × 10−15 |
49 | Software | 0 | Software | 0 | Software | 0 | Software | 3.72 × 10−15 |
50 | Science and Technology | 0 | Science and Technology | 0 | Science and Technology | 0 | Science and Technology | 3.72 × 10−15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.-H.; Seo, B.-S. Analyzing Trends in Digital Transformation Korean Social Media Data: A Semantic Network Analysis. Big Data Cogn. Comput. 2024, 8, 61. https://doi.org/10.3390/bdcc8060061
Song J-H, Seo B-S. Analyzing Trends in Digital Transformation Korean Social Media Data: A Semantic Network Analysis. Big Data and Cognitive Computing. 2024; 8(6):61. https://doi.org/10.3390/bdcc8060061
Chicago/Turabian StyleSong, Jong-Hwi, and Byung-Suk Seo. 2024. "Analyzing Trends in Digital Transformation Korean Social Media Data: A Semantic Network Analysis" Big Data and Cognitive Computing 8, no. 6: 61. https://doi.org/10.3390/bdcc8060061
APA StyleSong, J. -H., & Seo, B. -S. (2024). Analyzing Trends in Digital Transformation Korean Social Media Data: A Semantic Network Analysis. Big Data and Cognitive Computing, 8(6), 61. https://doi.org/10.3390/bdcc8060061