Fractional Definite Integral
Abstract
:1. Introduction
2. The Definite Fractional Integrals
2.1. On the One-Sided Integer Order Derivatives and Their Inverses
2.2. Order 1 Integral
2.3. Definite Fractional Integral
2.4. Which Fractional Derivative?
- 1P1
- Linearity
- 1P2
- Identity
- 1P3
- Backward compatibility
- 1P4
- The index law holds for negative orders
- 1P5
- Generalised Leibniz rule
2.5. The Riemann-Liouville and Caputo Derivatives
- The RL-FD is an inverse operator of the left RL-FI
- The C-FD is also an inverse operator of the left RL-FI
- If and , then
- If or , then
2.6. Grünwald-Letnikov Derivatives
2.7. Liouville Derivatives
3. Definite Fractional Integrals
3.1. Integrals in and
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
FD | Fractional derivative |
FI | Fractional integral |
RL | Riemann-Liouville |
L | Liouville |
C | Caputo |
GL | Grünwald-Letnikov |
References
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific Publishing: Singapore, 2011. [Google Scholar]
- Magin, R. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Machado, J.T.; Galhano, A.M.; Trujillo, J.J. Science Metrics on Fractional Calculus: Development Since 1966. Fract. Calc. Appl. Anal. 2013, 16. [Google Scholar] [CrossRef]
- Valério, D.; da Costa, J.S. An Introduction to Fractional Control; The Institution of Engineering and Technology: London, UK, 2013. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach Science Publishers: London, UK, 1993. [Google Scholar]
- Machado, J.T.; Mainardi, F.; Kiryakova, V. Fractional Calculus: Quo Vadimus? Fract. Calc. Appl. Anal. 2015, 18. [Google Scholar] [CrossRef]
- Machado, J.T.; Mainardi, F.; Kiryakova, V.; Atanacković, T. Fractional Calculus: D’oÙ venos-nous? Que sommes-Nous OÙ allons-Nous? Fract. Calc. Appl. Anal. 2016, 19. [Google Scholar] [CrossRef]
- Grigoletto, E.C.; de Oliveira, E.C. Fractional Versions of the Fundamental Theorem of Calculus. Appl. Math. 2013, 4, 23–33. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 2008, 323, 2756–2778. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Coito, F.J.V.; Trujillo, J.J. Discrete-time differential systems. Signal Process. 2015, 107, 198–217. [Google Scholar] [CrossRef]
- Krempl, P.W. Generalised Fractional Differential Equations using “Proper” Primitives. In Proceedings of the Fifth International Conference on Engineering Computational Technology, Las Palmas de Gran Canaria, Spain, 12–15 September 2006; Topping, B.H.V., Montero, G., Montenegro, R., Eds.; Civil-Comp Press: Stirlingshire, UK, 2006. [Google Scholar]
- Ortigueira, M.D.; Machado, J.T. What is a fractional derivative? Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.T. Which derivative? Signals 2017. submitted. [Google Scholar]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2011; Volume 84. [Google Scholar]
- Ortigueira, M.D.; Magin, R.; Trujillo, J.; Velasco, M.P. A real regularised fractional derivative. Signal Image Video Process. 2012, 6, 351–358. [Google Scholar] [CrossRef]
- Liouville, J. Memóire sur le calcul des différentielles à indices quelconques. J. l’École Polytech 1832, 13, 71–162. [Google Scholar]
- Liouville, J. Note sur une formule pour les différentielles à indices quelconques à l’occasion d’un mémoire de M. Tortolini. J. Math. Pures Appl. 1855, 20, 115–120. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortigueira, M.; Machado, J. Fractional Definite Integral. Fractal Fract. 2017, 1, 2. https://doi.org/10.3390/fractalfract1010002
Ortigueira M, Machado J. Fractional Definite Integral. Fractal and Fractional. 2017; 1(1):2. https://doi.org/10.3390/fractalfract1010002
Chicago/Turabian StyleOrtigueira, Manuel, and José Machado. 2017. "Fractional Definite Integral" Fractal and Fractional 1, no. 1: 2. https://doi.org/10.3390/fractalfract1010002
APA StyleOrtigueira, M., & Machado, J. (2017). Fractional Definite Integral. Fractal and Fractional, 1(1), 2. https://doi.org/10.3390/fractalfract1010002