Exact Solution of Two-Dimensional Fractional Partial Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- 1.
- 2.
- 3.
- 1.
- 2.
- 3.
- 4.
3. Fractional Sumudu Decomposition Method (FSDM)
4. Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baleanu, D.; Jassim, H.K. A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets. Fractal Fract. 2019, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Al-Mazmumy, M. The Modified Adomian Decomposition Method for Solving Nonlinear Coupled Burger’s Equations. Nonlinear Anal. Differ. Equ. 2015, 3, 111–122. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Baleanu, D.; Jassim, H.K.; Qurashi, M.A. Solving Helmholtz Equation with Local Fractional Operators. Fractal Fract. 2019, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Jassim, H.K.; Khan, H. A Modification Fractional Variational Iteration Method for solving Nonlinear Gas Dynamic and Coupled KdV Equations Involving Local Fractional Operators. Therm. Sci. 2018, 22, S165–S175. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Darus, M. On a New Solution of Fractional Differential Equation Using Complex Transform in the Unit Disk. Math. Comput. Appl. 2014, 19, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Seadawy, A.R.; Manafian, J. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod. Results Phys. 2018, 8, 1158–1167. [Google Scholar] [CrossRef]
- Selima, E.; Seadawy, A.R.; Yao, X. The nonlinear dispersive Davey-Stewartson system for surface waves propagation in shallow water and its stability. Eur. Phys. J. Plus 2016, 131, 1–14. [Google Scholar] [CrossRef]
- Seadawy, A.R.; El-Rashidy, K. Dispersive solitary wave solutions of Kadomtsev Petviashvili andmodified Kadomtsev-Petviashvili dynamical equations in unmagnetizeddust plasma. Results Phys. 2018, 8, 1216–1222. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Alamri, S.Z. Mathematical methods via the nonlinear two-dimensional water waves of Olver dynamical equation and its exact solitary wave solutions. Results Phys. 2018, 8, 286–291. [Google Scholar] [CrossRef]
- Dehghan, M.; Shakeri, F. A semi-numerical technique for solving the multi-point boundary value problems and engineering applications. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 794–809. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Swroop, R. Numerical solution of time- and space-fractional coupled Burger’s equations via homotopy algorithm. Alex. Eng. J. 2016, 55, 1753–1763. [Google Scholar] [CrossRef] [Green Version]
- Jassim, H.K.; Shahab, W.A. Fractional variational iteration method to solve one dimensional second order hyperbolic telegraph equations. J. Phys. Conf. Ser. 2018, 1032, 012015. [Google Scholar] [CrossRef]
- Xu, S.; Ling, X.; Zhao, Y.; Jassim, H.K. A Novel Schedule for Solving the Two-Dimensional Diffusion in Fractal Heat Transfer. Therm. Sci. 2015, 19, S99–S103. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K.; Tchier, F.; Baleanu, D. On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operator. Entropy 2016, 18, 150. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, A.; Kelleci, A. Homotopy perturbation method for numerical solutions of coupled Burgers equations with time-space fractional derivatives. Int. J. Numer. Methods Heat Fluid Flow 2010, 20, 897–909. [Google Scholar] [CrossRef]
- Jassim, H.K. Homotopy Perturbation Algorithm Using Laplace Transform for Newell-Whitehead-Segel Equation. Int. J. Adv. Appl. Math. Mech. 2015, 2, 8–12. [Google Scholar]
- Jassim, H.K. New Approaches for Solving Fokker Planck Equation on Cantor Sets within Local Fractional Operators. J. Math. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Jassim, H.K.; Al-Qurashi, M.; Baleanu, D. On the Existence and Uniqueness of Solutions for Local differential equations. Entropy 2016, 18, 420. [Google Scholar] [CrossRef] [Green Version]
- Jassim, H.K. The Approximate Solutions of Three-Dimensional Diffusion and Wave Equations within Local Fractional Derivative Operator. Abstr. Appl. Anal. 2016, 2016, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jassim, H.K.; Baleanu, D. A novel approach for Korteweg-de Vries equation of fractional order. J. Appl. Comput. Mech. 2019, 5, 192–198. [Google Scholar]
- Baleanu, D.; Jassim, H.K. Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings. Fractal Fract. 2019, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elhameed, W.M.; Youssri, Y.H. A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations. Entropy 2016, 18, 345. [Google Scholar] [CrossRef]
- Doha, E.H.; Abd-Elhameed, W.M.; Elkot, N.A.; Youssri, Y.H. Integral spectral Tchebyshev approach for solving space Riemann-Liouville and Riesz fractional advection-dispersion problems. Adv. Differ. Equ. 2017, 284. [Google Scholar] [CrossRef] [Green Version]
- Youssri, Y.H.; Abd-Elhameed, W.M. Numerical spectral Legendre-Galerkin algorithm For Solving Time Fractional Telegraph Equation. Rom. J. Phys. 2018, 63, 1–16. [Google Scholar]
- Hafez, R.M.; Youssri, Y.H. Jacobi collocation scheme for variable-order fractional reaction-sub diffusion equation. Comput. Appl. Math. 2018, 37, 5315–5333. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Hafez, R.M. Exponential Jacobi spectral method for hyperbolic partial differential equations. Math. Sci. 2019, 13, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Karbalaie, A.; Montazeri, M.M.; Muhammed, H.H. Exact Solution of Time-Fractional Partial Differential Equations Using Sumudu Transform. WSEAS Trans. Math. 2014, 13, 142–151. [Google Scholar]
- Kumar, D.; Singh, J.; Baskonus, H.M.; Bulut, H. An effective computational approach to local fractional telegraph equations. Nonlinear Sci. Lett. A 2017, 8, 200–206. [Google Scholar]
- Rathore, S.; Kumar, D.; Singh, J.; Gupta, S. Homotopy Analysis Sumudu Transform Method for Nonlinear Equations. Int. J. Ind. Math. 2018, 4, 1–8. [Google Scholar]
- Jassim, H.K.; Mohammed, M.G.; Khafif, S.A. The Approximate solutions of time-fractional Burger’s and coupled time-fractional Burger’s equations. Int. J. Adv. Appl. Math. Mech. 2019, 6, 64–70. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baleanu, D.; Jassim, H.K. Exact Solution of Two-Dimensional Fractional Partial Differential Equations. Fractal Fract. 2020, 4, 21. https://doi.org/10.3390/fractalfract4020021
Baleanu D, Jassim HK. Exact Solution of Two-Dimensional Fractional Partial Differential Equations. Fractal and Fractional. 2020; 4(2):21. https://doi.org/10.3390/fractalfract4020021
Chicago/Turabian StyleBaleanu, Dumitru, and Hassan Kamil Jassim. 2020. "Exact Solution of Two-Dimensional Fractional Partial Differential Equations" Fractal and Fractional 4, no. 2: 21. https://doi.org/10.3390/fractalfract4020021
APA StyleBaleanu, D., & Jassim, H. K. (2020). Exact Solution of Two-Dimensional Fractional Partial Differential Equations. Fractal and Fractional, 4(2), 21. https://doi.org/10.3390/fractalfract4020021