Fractional-Order Derivatives Defined by Continuous Kernels: Are They Really Too Restrictive?
Abstract
:1. Introduction
2. Problem Analysis
3. Conclusions
Funding
Conflicts of Interest
References
- Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Batlle, V.F. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer: London, UK, 2010. [Google Scholar]
- Sabatier, J.; Farges, C.; Tartaglione, V. Some alternative solutions to fractional models for modelling long memory behaviors. Mathematics 2020, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Machado, J.A.T. A critical analysis of the Caputo–Fabrizio operator. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 608–611. [Google Scholar] [CrossRef]
- Tarasov, V.E. No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Martynyuk, V.; Fedula, M.; Machado, J.T. The failure of certain fractional calculus operators in two physical models. Fract. Calc. Appl. Anal. 2019, 22, 255–270. [Google Scholar] [CrossRef]
- Stynes, M. Fractional-order derivatives defined by continuous kernels are too restrictive. Appl. Math. Lett. 2018, 85, 22–26. [Google Scholar] [CrossRef]
- Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 2020, 23, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Kai Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M. Why fractional derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal. 2020, 23. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Initialized fractional calculus. Int. J. Appl. Math. 2000, 3, 249–265. [Google Scholar]
- Lorenzo, C.F.; Hartley, T.T. Initialization in fractional order systems. In Proceedings of the European Conference On Control ECC, Porto, Portugal, 4–7 September 2001; pp. 1471–1476. [Google Scholar]
- Ortigueira, M.D. On the initial conditions in continuous-time fractional linear systems. Signal Process. 2003, 83, 2301–2309. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, M.; Shimizu, N. Role of prehistories in the initial value problems of fractional viscoelastic equations. Nonlinear Dyn. 2004, 38, 207–220. [Google Scholar] [CrossRef]
- Sabatier, J.; Merveillaut, M.; Malti, R.; Oustaloup, A. On a Representation of Fractional Order Systems: Interests for the Initial Condition Problem, 3rd ed.; IFAC Workshop: Ankara, Turkey, 2008. [Google Scholar]
- Sabatier, J.; Merveillaut, M.; Malti, R.; Oustaloup, A. How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1318–1326. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Coito, F. System initial conditions vs derivative initial conditions. Comput. Math. Appl. 2010, 59, 1782–1789. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, J.; Farges, C. Comments on the description and initialization of fractional partial differential equations using riemann-liouville’s and caputo’s definitions. J. Comput. Appl. Math. 2018, 339, 30–39. [Google Scholar] [CrossRef]
- Balint, A.M.; Balint, S. Mathematical description of the groundwater flow and that of the impurity spread, which use temporal caputo or riemann-liouville fractional partial derivatives, is non-objective. Fractal Fract. 2020, 4, 36. [Google Scholar] [CrossRef]
- Sabatier, J.; Farges, C.; Trigeassou, J.C. Fractional systems state space description: Some wrong ideas and proposed solutions. J. Vib. Control 2014, 20, 1076–1084. [Google Scholar] [CrossRef]
- Oliveira, E.C.D.; Machado, J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, J. Fractional state space description: A particular case of the volterra equations. Fractal Fract. 2020, 4, 23. [Google Scholar] [CrossRef]
- Sabatier, J. Non-singular kernels for modelling power law type long memory behaviours and beyond. Cybern. Syst. 2020, 51, 383–401. [Google Scholar] [CrossRef]
- Sabatier, J. Power law type long memory behaviors modeled with distributed time delay systems. Fractal Fract. 2019, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Özbay, H.; Bonnet, C.; Clairambault, J. Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics. In Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 2050–2055. [Google Scholar]
- Zhao, D.; Luo, M. Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds. Appl. Math. Comput. 2019, 346, 531–544. [Google Scholar]
- Fernandez, A.; Özarslan, M.A.; Baleanu, D. On fractional calculus with general analytic kernels. Appl. Math. Comput. 2019, 354, 248–265. [Google Scholar]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Lutz, E. Fractional langevin equation. Phys. Rev. E 2001, 64. [Google Scholar] [CrossRef] [Green Version]
- Pottier, N. Aging properties of an anomalously diffusing particle. Phys. Stat. Mech. Appl. 2003, 317, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Viñales, A.D.; Despósito, M.A. Anomalous diffusion induced by a Mittag-Leffler correlated noise. Phys. Rev. E 2007, 75, 042102. [Google Scholar] [CrossRef] [Green Version]
- Viñales, A.D.; Wang, K.-G.; Despósito, M.A. Anomalous diffusive behavior of a harmonic oscillator driven by a mittag-leffler noise. Phys. Rev. E 2009, 80, 011101. [Google Scholar] [CrossRef]
- Sandev, T.; Chechkin, A.; Kantz, H.; Metzler, R. Diffusion and fokker-planck-smoluchowski equations with generalized memory kernel. Fract. Calc. Appl. Anal. 2015, 18, 1006–1038. [Google Scholar] [CrossRef]
- Liemert, A.; Sandev, T.; Kantz, H. Generalized langevin equation with tempered memory kernel. Phys. A Stat. Mech. Appl. 2017, 466, 356–369. [Google Scholar] [CrossRef]
- Sandev, T. Generalized langevin equation and the prabhakar derivative. Mathematics 2017, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Sandev, T.; Deng, W.; Xu, P. Models for characterizing the transition among anomalous diffusions with different diffusion exponents. J. Phys. A Math. Theor. 2018, 51, 405002. [Google Scholar] [CrossRef] [Green Version]
- Sandev, T.; Tomovski, Z.; Dubbeldam, J.L.A.; Chechkin, A. Generalized diffusion-wave equation with memory kernel. J. Phys. A Math. Theor. 2018, 52, 015101. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Joseph Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 2000, 61, 132–138. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabatier, J. Fractional-Order Derivatives Defined by Continuous Kernels: Are They Really Too Restrictive? Fractal Fract. 2020, 4, 40. https://doi.org/10.3390/fractalfract4030040
Sabatier J. Fractional-Order Derivatives Defined by Continuous Kernels: Are They Really Too Restrictive? Fractal and Fractional. 2020; 4(3):40. https://doi.org/10.3390/fractalfract4030040
Chicago/Turabian StyleSabatier, Jocelyn. 2020. "Fractional-Order Derivatives Defined by Continuous Kernels: Are They Really Too Restrictive?" Fractal and Fractional 4, no. 3: 40. https://doi.org/10.3390/fractalfract4030040
APA StyleSabatier, J. (2020). Fractional-Order Derivatives Defined by Continuous Kernels: Are They Really Too Restrictive? Fractal and Fractional, 4(3), 40. https://doi.org/10.3390/fractalfract4030040