Impulsive Fractional Cohen-Grossberg Neural Networks: Almost Periodicity Analysis
Abstract
:1. Introduction
2. Preliminaries
2.1. Fractional Calculus Notes
2.2. Model Formulation
2.3. Almost Periodicity Definitions
2.4. Lyapunov-Type Functions Definitions and Lemmas
- V is defined and continuous on Ω, V has nonnegative values, and for ;
- V is differentiable in t and locally Lipschitz continuous with respect to its second and third arguments on each of the sets ;
- For any , and each , there exist the finite limits
3. Main Almost Periodicity Results
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics, 1st ed.; World Scientific: Singapore, 2000; ISBN 9810234570. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; ISBN 0444518320/9780444518323. [Google Scholar]
- Podlubny, I. Fractional Differential Equations, 1st ed.; Academic Press: San Diego, CA, USA, 1999; ISBN 558840-2. [Google Scholar]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.; Machado, J. Which Derivative? Fractal Fract. 2017, 1, 3. [Google Scholar] [CrossRef]
- Achar, B.N.N.; Lorenzo, C.F.; Hartley, T.T. The Caputo fractional derivative: Initialization issues relative to fractional differential equation. In Advances in Fractional Calculus; Sabatier, J., Agrawal, O.P., Machado, J.A.T., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 27–42. [Google Scholar]
- Choi, S.K.; Kang, B.; Koo, N. Stability for Caputo fractional differential systems. Abstr. Appl. Anal. 2014, 2014, 631419. [Google Scholar] [CrossRef]
- Ishteva, M.K. Properties and Applications of Caputo Fractional Operator. Master’s Thesis, Department of Mathematics, Universit¨at Karlsruhe (TH), Sofia, Bulgaria, 2005. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 2nd ed.; World Scientific: Singapore, 2016; ISBN 9813140038/978-9813140035. [Google Scholar]
- Ucar, E.; O¨zdemir, N. A fractional model of cancer-immune system with Caputo and Caputo–Fabrizio derivatives. Eur. Phys. J. Plus 2021, 136, 43. [Google Scholar] [CrossRef]
- Ali, A.; Khan, M.Y.; Sinan, M.; Allehiany, F.M.; Mahmoud, E.E.; Abdel-Aty, A.H.; Ali, G. Theoretical and numerical analysis of novel COVID-19 via fractional order mathematical model. Results Phys. 2021, 20, 103676. [Google Scholar] [CrossRef]
- Li, H.-L.; Hu, C.; Cao, J.; Jiang, H.; Alsaedi, A. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw. 2019, 118, 102–109. [Google Scholar] [CrossRef]
- Li, H.-L.; Jiang, H.; Cao, J.; Jiang, H. Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delays. Neurocomputing 2020, 385, 211–2019. [Google Scholar] [CrossRef]
- Pu, Y.-F.; Yi, Z.; Zhou, J.-L. Fractional Hopfield neural networks: Fractional dynamic associative recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2319–2333. [Google Scholar] [CrossRef]
- Zun˜iga Aguilar, C.J.; Go´mez-Aguilar, J.F.; Alvarado-Marti´nez, V.M.; Romero-Ugalde, H.M. Fractional order neural networks for system identification. Chaos Solitons Fractals 2020, 130, 109444. [Google Scholar] [CrossRef]
- Ke, Y.; Miao, C. Stability analysis of fractional-order Cohen–Grossberg neural networks with time delay. Int. J. Comput. Math. 2015, 92, 1102–1113. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Cao, J.; Lim, C.P.; Bagdasar, O. Stability and pinning synchronization analysis of fractional order delayed Cohen-Grossberg neural networks with discontinuous activations. Appl. Math. Comput. 2019, 359, 241–260. [Google Scholar] [CrossRef]
- Rajivganthi, C.; Rihan, F.A.; Lakshmanan, S.; Muthukumar, P. Finite-time stability analysis for fractional-order Cohen– Grossberg BAM neural networks with time delays. Neural Comput. Appl. 2018, 29, 1309–1320. [Google Scholar] [CrossRef]
- Zhang, F.; Zeng, Z. Multiple Mittag-Leffler stability of delayed fractional-order Cohen–Grossberg neural networks via mixed monotone operator pair. IEEE Trans. Cybern. 2020, 1–12. [Google Scholar] [CrossRef]
- Cohen, M.A.; Grossberg, S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybern. 1983, 13, 815–826. [Google Scholar] [CrossRef]
- Aouiti, C.; Assali, E.A. Nonlinear Lipschitz measure and adaptive control for stability and synchronization in delayed inertial Cohen–Grossberg-type neural networks. Int. J. Adapt. Control 2019, 33, 1457–1477. [Google Scholar] [CrossRef]
- Gan, Q. Adaptive synchronization of Cohen-Grossberg neural networks with unknown parameters and mixed time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3040–3049. [Google Scholar] [CrossRef]
- Ozcan, N. Stability analysis of Cohen–Grossberg neural networks of neutral-type: Multiple delays case. Neural Netw. 2019, 113, 20–27. [Google Scholar] [CrossRef]
- Yuan, K.; Cao, J.; Li, H. Robust stability of switched Cohen–Grossberg neural networks with mixed time-varying delays. IEEE Trans. Syst. Man Cybern. 2006, 36, 1356–1363. [Google Scholar] [CrossRef]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2017; ISBN 9781498764834. [Google Scholar]
- Wang, J.R.; Fec˘kan, M.; Zhou, Y. On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial. Differ. Equ. 2011, 8, 345–361. [Google Scholar]
- Yang, S.; Hu, C.; Yu, J.; Jiang, H. Exponential stability of fractional-order impulsive control systems with applications in synchronization. IEEE Trans. Cybern. 2020, 50, 3157–3168. [Google Scholar] [CrossRef]
- Lin, J.; Xu, R.; Li, L. Mittag-Leffler synchronization for impulsive fractional-order bidirectional associative memory neural networks via optimal linear feedback control. Nonlinear Anal. Model. Control 2021, 26, 207–226. [Google Scholar] [CrossRef]
- Stamova, I. Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dynam. 2014, 77, 1251–1260. [Google Scholar] [CrossRef]
- Stamova, I.; Stamov, G. Mittag–Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers. Neural Netw. 2017, 96, 22–32. [Google Scholar] [CrossRef]
- Udhayakumar, K.; Rakkiyappan, R.; Cao, J.; Tan, X. Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks. Front. Inform. Technol. Electron. Eng. 2020, 21, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Benchohra, M.; Henderson, J.; Ntouyas, J. Impulsive Differential Equations and Inclusions, 1st ed.; Hindawi Publishing Corporation: New York, NY, USA, 2006; ISBN 977594550X/978-9775945501. [Google Scholar]
- Li, X.; Bohner, M.; Wang, C.K. Impulsive differential equations: Periodic solutions and applications. Automatica J. IFAC 2015, 52, 173–178. [Google Scholar] [CrossRef]
- Li, X.; Wu, J. Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay. IEEE Trans. Automat. Control 2018, 63, 306–311. [Google Scholar] [CrossRef]
- Stamova, I.M.; Stamov, G.T. Applied Impulsive Mathematical Models, 1st ed.; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-28061-5. [Google Scholar]
- Yang, T. Impulsive Control Theory; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-540-47710-5. [Google Scholar]
- Yang, X.; Peng, D.; Lv, X.; Li, X. Recent progress in impulsive control systems. Math. Comput. Simul. 2019, 155, 244–268. [Google Scholar] [CrossRef]
- Bohner, M.; Stamov, G.T.; Stamova, I.M. Almost periodic solutions of Cohen–Grossberg neural networks with time-varying delay and variable impulsive perturbations. Commun. Nonlinear Sci. Numer. Simul. 2020, 80, 104952. [Google Scholar] [CrossRef]
- Cao, J.; Stamov, T.; Sotirov, S.; Sotirova, E.; Stamova, I. Impulsive control via variable impulsive perturbations on a generalized robust stability for Cohen–Grossberg neural networks with mixed delays. IEEE Access 2020, 8, 222890–222899. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Xing, Z. The existence of nonzero almost periodic solution for Cohen–Grossberg neural networks with continuously distributed delays and impulses. Neurocomputing 2010, 73, 3105–3113. [Google Scholar] [CrossRef]
- Lisena, B. Dynamical behavior of impulsive and periodic Cohen– Grossberg neural networks. Nonlinear Anal. 2011, 74, 4511–4519. [Google Scholar] [CrossRef]
- Stamov, G.; Gospodinova, E.; Stamova, I. Practical exponential stability with respect to h-manifolds of discontinuous delayed Cohen–Grossberg neural networks with variable impulsive perturbations. Math. Model. Control 2021, 1, 26–34. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I.; Venkov, G.; Stamov, T.; Spirova, C. Global stability of integral manifolds for reaction–diffusion delayed neural networks of Cohen–Grossberg-type under variable impulsive perturbations. Mathematics 2020, 8, 1082. [Google Scholar] [CrossRef]
- Wu, C. Existence of periodic solutions for Cohen–Grossberg neural networks with time-varying delays and impulses. In Advances in Neural Networks, 1st ed.; Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6675, pp. 521–528. ISBN 978-3-642-21104-1. [Google Scholar]
- Xu, C.; Zhang, Q. On anti–periodic solutions for Cohen–Grossberg shunting inhibitory neural networks with time–varying delays and impulses. Neural Comput. 2014, 26, 2328–2349. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Jiang, Q.; Gu, G. Global exponential stability of almost periodic solution for neutral–type Cohen–Grossberg shunting inhibitory cellular neural networks with distributed delays and impulses. Comput. Intell. Neurosci. 2016, 2016, 6508734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yang, Y.; Xu, X. Synchronization analysis for fractional order memristive Cohen-Grossberg neural networks with state feedback and impulsive control. Phys. A 2018, 506, 644–660. [Google Scholar] [CrossRef]
- Du, W.S.; Kostic´, M.; Pinto, M. Almost periodic functions and their applications: A survey of results and perspectives. J. Math. 2021, 2021, 5536018. [Google Scholar] [CrossRef]
- Fink, A.M. Almost Periodic Differential Equations, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1974; ISBN 978-3-540-38307-9. [Google Scholar]
- Levitan, M.; Zhikov, V.V. Almost Periodic Functions and Differential Equations, 1st ed.; Cambridge University Press: London, UK, 1982; ISBN 9780521244077. [Google Scholar]
- Luo, D.; Wang, Q. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delay. Discrete Contin. Dyn. Syst. Ser. B 2021, 26, 3427–3453. [Google Scholar]
- Samoilenko, A.M.; Perestyuk, N.A. Impulsive Differential Equations, 1st ed.; World Scientific: River Edge, NJ, USA, 1995; ISBN 978-981-02-2416-5. [Google Scholar]
- Stamov, G.T. Almost Periodic Solutions of Impulsive Differential Equations, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-27545-6. [Google Scholar]
- Debbouche, A.; El-Borai, M.M. Weak almost periodic and optimal mild solutions of fractional evolution equations. Electron. J. Differ. Equ. 2009, 2009, 1–8. [Google Scholar]
- El-Borai, M.M.; Debbouche, A. Almost periodic solutions of some nonlinear fractional differential equations. Int. J. Contemp. Math. Sci. 2009, 4, 1373–1387. [Google Scholar]
- Kaslik, E.; Sivasundaram, S. Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 2012, 13, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Shu, X.-B.; Mao, J. Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay. Stoch. Dyn. 2020, 20, 2050003. [Google Scholar] [CrossRef]
- Singh, V.; Pandey, D.N. Weighted pseudo almost periodic solutions for fractional order stochastic impulsive differential equations. Cubo 2017, 19, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Stamov, G.; Stamova, I. Second method of Lyapunov and almost periodic solutions for impulsive differential systems of fractional order. IMA J. Appl. Math. 2015, 80, 1619–1633. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I. Impulsive fractional-order neural networks with time-varying delays: Almost periodic solutions. Neural Comput. Appl. 2017, 28, 3307–3316. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I. Uncertain impulsive differential systems of fractional order: Almost periodic solutions. Internat. J. Syst. Sci. 2018, 49, 631–638. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A. Impulsive functional differential equations with variable times. Comput. Math. Appl. 2004, 47, 1659–1665. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Yang, X.; Li, C.; Huang, T.; Chen, X. Stability analysis of nonlinear fractional-order systems with variable-time impulses. J. Franklin Inst. 2017, 354, 2959–2978. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.; Song, Q.; Huang, T.; Chen, X. Mittag–Leffler stability analysis on variable-time impulsive fractional-order neural networks. Neurocomputing 2016, 207, 276–286. [Google Scholar] [CrossRef]
- Anbalagan, P.; Hincal, E.; Ramachandran, R.; Baleanu, D.; Cao, J.; Huang, C.; Niezabitowski, M. Delay-coupled fractional order complex Cohen-Grossberg neural networks under parameter uncertainty: Synchronization stability criteria. AIMS Math. 2021, 6, 2844–2873. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Liao, X. Robust stability of uncertain impulsive dynamical systems. J. Math. Anal. Appl. 2004, 290, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Stamov, G.T.; Simeonov, S.; Stamova, I.M. Uncertain impulsive Lotka–Volterra competitive systems: Robust stability of almost periodic solutions. Chaos Solitons Fractals 2018, 110, 178–184. [Google Scholar] [CrossRef]
- Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Comm. Nonlinear Sci. Numer. Simul. 2014, 19, 2951–2957. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.Q.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamova, I.; Sotirov, S.; Sotirova, E.; Stamov, G. Impulsive Fractional Cohen-Grossberg Neural Networks: Almost Periodicity Analysis. Fractal Fract. 2021, 5, 78. https://doi.org/10.3390/fractalfract5030078
Stamova I, Sotirov S, Sotirova E, Stamov G. Impulsive Fractional Cohen-Grossberg Neural Networks: Almost Periodicity Analysis. Fractal and Fractional. 2021; 5(3):78. https://doi.org/10.3390/fractalfract5030078
Chicago/Turabian StyleStamova, Ivanka, Sotir Sotirov, Evdokia Sotirova, and Gani Stamov. 2021. "Impulsive Fractional Cohen-Grossberg Neural Networks: Almost Periodicity Analysis" Fractal and Fractional 5, no. 3: 78. https://doi.org/10.3390/fractalfract5030078
APA StyleStamova, I., Sotirov, S., Sotirova, E., & Stamov, G. (2021). Impulsive Fractional Cohen-Grossberg Neural Networks: Almost Periodicity Analysis. Fractal and Fractional, 5(3), 78. https://doi.org/10.3390/fractalfract5030078