Fractional Integral Inequalities for Exponentially Nonconvex Functions and Their Applications
Abstract
:1. Introduction and Preliminaries
- (I)
- Taking we have an exponentially –nonconvex function.
- (II)
- Choosing and , we obtain an exponentially –nonconvex function.
- (III)
- Setting and for we obtain an exponentially –Breckner-nonconvex function.
- (IV)
- Putting and for we obtain an exponentially –Godunova–Levin–Dragomir-nonconvex function.
- (V)
- Taking we obtain an exponentially –nonconvex function.
2. Main Results and Their Consequences
3. Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo Hadamard fractional derivatives. Math. Methods Appl. Sci. 2016, 40, 661–681. [Google Scholar]
- Tan, W.; Jiang, F.L.; Huang, C.X.; Zhou, L. Synchronization for a class of fractional-order hyperchaotic system and its application. J. Appl. Math. 2012, 2012, 974639. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.S.; Huang, C.X.; Hu, H.J.; Liu, L. Inequality estimates for the boundedness of multilinear singular and fractional integral operators. J. Inequal. Appl. 2013, 2013, 303. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.W.; Feng, L.B.; Anh, V.; Li, J. Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains. Comput. Math. Appl. 2019, 78, 1637–1650. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier: Amsterdam, The Netherlands; Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 2020, 60, 73–116. [Google Scholar]
- Cai, Z.W.; Huang, J.H.; Huang, L.H. Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 2018, 146, 4667–4682. [Google Scholar] [CrossRef]
- Chen, T.; Huang, L.H.; Yu, P.; Huang, W.T. Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal. Real World Appl. 2018, 41, 82–106. [Google Scholar] [CrossRef]
- Wang, J.F.; Chen, X.Y.; Huang, L.H. The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 2019, 469, 405–427. [Google Scholar] [CrossRef]
- Houas, M. Certain weighted integral inequalities involving the fractional hypergeometric operators. Sci. Ser. A Math. Sci. 2016, 27, 87–97. [Google Scholar]
- Houas, M. On some generalized integral inequalities for Hadamard fractional integrals. Mediterr. J. Model. Simul. 2018, 9, 43–52. [Google Scholar]
- Baleanu, D.; Mohammed, P.O.; Vivas-Cortez, M.; Rangel-Oliveros, Y. Some modifications in conformable fractional integral inequalities. Adv. Differ. Equ. 2020, 2020, 374. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mohammed, P.O.; Kashuri, A. New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications. J. Funct. Spaces 2020, 2020, 4352357. [Google Scholar]
- Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Brevik, I. A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L. Inequalities, 2nd ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Atici, F.M.; Yaldiz, H. Convex functions on discrete time domains. Can. Math. Bull. 2016, 59, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Tomar, M.; Agarwal, P.; Jleli, M.; Samet, B. Certain Ostrowski type inequalities for generalized s–convex functions. J. Nonlinear Sci. Appl. 2017, 10, 5947–5957. [Google Scholar] [CrossRef] [Green Version]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite-Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
- Baleanu, D.; Kashuri, A.; Mohammed, P.O.; Meftah, B. General Raina fractional integral inequalities on coordinates of convex functions. Adv. Differ. Equ. 2021, 2021, 82. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Zeng, S.; Kashuri, A. Fractional Hermite-Hadamard integral inequalities for a new class of convex functions. Symmetry 2020, 12, 1485. [Google Scholar] [CrossRef]
- Kashuri, A.; Liko, R. Some new Hermite-Hadamard type inequalities and their applications. Stud. Sci. Math. Hung. 2019, 56, 103–142. [Google Scholar] [CrossRef]
- Alqudah, M.A.; Kashuri, A.; Mohammed, P.O.; Abdeljawad, T.; Raees, M.; Anwar, M.; Hamed, Y.S. Hermite-Hadamard integral inequalities on coordinated convex functions in quantum calculus. Adv. Differ. Equ. 2021, 2021, 264. [Google Scholar] [CrossRef]
- Delavar, M.R.; De La Sen, D. Some generalizations of Hermite–Hadamard type inequalities. SpringerPlus 2016, 5, 1661. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.B.; Mohammed, P.O.; Noor, B.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Alqudah, M.A.; Jarad, F. New discrete inequalities of Hermite-Hadamard type for convex functions. Adv. Differ. Equ. 2021, 2021, 122. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
- Mohammed, P.O. New generalized Riemann-Liouville fractional integral inequalities for convex functions. J. Math. Inequal. 2021, 15, 511–519. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific Publishing Company: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 2011. [Google Scholar]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Katugampola, U.N. New fractional integral unifying six existing fractional integrals. arXiv 2016, arXiv:1612.08596. [Google Scholar]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press, Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1940, 238, 423–451. [Google Scholar]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Srivastava, H.M.; Bansal, M.K.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function. Math. Meth. Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Baleanu, D.; Hamed, Y.S. Fractional Integral Inequalities for Exponentially Nonconvex Functions and Their Applications. Fractal Fract. 2021, 5, 80. https://doi.org/10.3390/fractalfract5030080
Srivastava HM, Kashuri A, Mohammed PO, Baleanu D, Hamed YS. Fractional Integral Inequalities for Exponentially Nonconvex Functions and Their Applications. Fractal and Fractional. 2021; 5(3):80. https://doi.org/10.3390/fractalfract5030080
Chicago/Turabian StyleSrivastava, Hari Mohan, Artion Kashuri, Pshtiwan Othman Mohammed, Dumitru Baleanu, and Y. S. Hamed. 2021. "Fractional Integral Inequalities for Exponentially Nonconvex Functions and Their Applications" Fractal and Fractional 5, no. 3: 80. https://doi.org/10.3390/fractalfract5030080
APA StyleSrivastava, H. M., Kashuri, A., Mohammed, P. O., Baleanu, D., & Hamed, Y. S. (2021). Fractional Integral Inequalities for Exponentially Nonconvex Functions and Their Applications. Fractal and Fractional, 5(3), 80. https://doi.org/10.3390/fractalfract5030080