A Fast Preconditioned Semi-Implicit Difference Scheme for Strongly Nonlinear Space-Fractional Diffusion Equations
Abstract
:1. Introduction
2. The Semi-Implicit Difference Scheme and Its Stability and Convergence Analysis
2.1. The Semi-Implicit Difference Scheme
2.2. Stability and Convergence Analysis
- (1)
- and for all ;
- (2)
- and .
3. Extensions to the Two-Dimensional Problem
4. Fast Implementation of the Semi-Implicit Difference Scheme
4.1. One-Dimensional Coefficient Matrix
4.2. Two-Dimensional Coefficient Matrix
Algorithm 1 The preconditioned BiCGSTAB method. |
|
5. Numerical Experiments
- (1)
- We apply the numerical scheme (24) with time step , and we compute the solution . According to the error analysis of the method, the following holds:
- (2)
- Another run with the scheme (24) is carried out using , and a new solution is computed on the fine temporal grid. According to the error analysis, we have the following:
- (3)
- We compute and define :
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moroney, T.; Yang, Q. A banded preconditioner for the two-sided, nonlinear space-fractional diffusion equation. Comput. Math. Appl. 2013, 66, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Moroney, T.; Yang, Q. Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast Poisson preconditioners. J. Comput. Phys. 2013, 246, 304–317. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Liu, F.; Turner, I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34, 200–218. [Google Scholar] [CrossRef] [Green Version]
- Ding, H. High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 2017, 71, 759–784. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Li, C. On Riesz derivative. Fract. Calc. Appl. Anal. 2019, 22, 287–301. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 399, 1–77. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by franctional dynamics. J. Phys. A Math. Gen. 2004, 37, R161. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Wyss, W. The fractional diffusion equation. J. Math. Phys. 1986, 27, 2782–2785. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ail, U.; Sohail, M.; Abdullah, F.A. An efficient numerical scheme for variable-order fractional sub-diffusion equation. Symmetry 2020, 13, 1437. [Google Scholar] [CrossRef]
- Ilic, M.; Liu, F.; Turner, I.; Anh, V. Numerical approximation of a fractional-in-space diffusion equation, I. Fract. Calc. Appl. Anal. 2005, 8, 323–341. [Google Scholar]
- Ilic, M.; Liu, F.; Turner, I.; Anh, V. Numerical approximation of a fractional-in-space diffusion equation (II)–with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 2006, 9, 333–349. [Google Scholar]
- Sousa, E.; Li, C. A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative. Appl. Numer. Math. 2015, 90, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Diethelm, K. An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 1997, 5, 1–6. [Google Scholar]
- Li, M.; Gu, X.-M.; Huang, C.; Fei, M.; Zhang, G. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 2018, 358, 256–282. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, X.; Cai, W.; Karniadakis, G.E. Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput. Methods Appl. Mech. Eng. 2017, 325, 56–76. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Liu, H.; Zheng, X. A preconditioned fast finite volume method for distributed-order diffusion equation and applications. East. Asian J. Appl. Math. 2019, 9, 28–44. [Google Scholar] [CrossRef]
- Simmons, A.; Yang, Q.; Moroney, T. A finite volume method for two-sided fractional diffusion equations on non-uniform meshes. J. Comput. Phys. 2017, 335, 747–759. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.; Liu, F.; Li, C.; Burrage, K.; Turner, I.; Anh, V. A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 2014, 52, 2599–2622. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.Y.; Zhou, H.; Deng, W. A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 2015, 84, 1703–1727. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Deng, W. A new family of difference schemes for space fractional advection diffusion equation. Adv. Appl. Math. Mech. 2017, 9, 282–306. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.-P.; Sun, Z.-Z.; Cao, W.-R. A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 2015, 281, 787–805. [Google Scholar] [CrossRef]
- Çelik, C.; Duman, M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 2012, 231, 1743–1750. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Yan, Y. A new numerical method for solving Riesz space-fractional diffusion equation. Math. Numer. Sin. 2019, 41, 170–190. (In Chinese) [Google Scholar]
- Lin, X.-L.; Ng, M.K.; Sun, H.-W. Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equations with variable diffusion coefficients. J. Sci. Comput. 2018, 75, 1102–1127. [Google Scholar] [CrossRef]
- Lin, X.-L.; Ng, M.K.; Sun, H.-W. Crank-Nicolson alternative direction implicit method for space-fractional diffusion equations with nonseparable coefficients. SIAM J. Numer. Anal. 2019, 57, 997–1019. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, N.E.; Moroney, T.J.; Yang, Q.; Turner, I.W. GPU accelerated algorithms for computing matrix function vector products with applications to exponential integrators and fractional diffusion. SIAM J. Sci. Comput. 2016, 38, C127–C149. [Google Scholar] [CrossRef]
- Lin, X.-L.; Ng, M.K.; Sun, H.-W. A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 2017, 38, 1580–1614. [Google Scholar] [CrossRef]
- Huang, X.; Lin, X.-L.; Ng, M.K.; Sun, H.-W. Spectral analysis for preconditioning of multi-dimensional Riesz fractional diffusion equations. arXiv 2021, arXiv:2102.01371. [Google Scholar]
- Simmons, A.; Yang, Q.; Moroney, T. A preconditioned numerical solver for stiff nonlinear reaction-diffusion equations with fractional Laplacians that avoids dense matrices. J. Comput. Phys. 2015, 287, 254–268. [Google Scholar] [CrossRef] [Green Version]
- Bertaccini, D.; Durastante, F. Efficient Preconditioner Updates for Semilinear Space-Time Fractional Reaction-Diffusion Equations. In Structured Matrices in Numerical Linear Algebra; Bini, D., Di Benedetto, F., Tyrtyshnikov, E., Van Barel, M., Eds.; Springer INdAM Series; Springer: Cham, Switzerland, 2019; Volume 30, pp. 285–302. [Google Scholar]
- Huang, X.; Sun, H.-W. A preconditioner based on sine transform for two-dimensional semi-linear Riesz space fractional diffusion equations in convex domains. Appl. Numer. Math. 2021, 169, 289–302. [Google Scholar] [CrossRef]
- Jian, H.-Y.; Huang, T.-Z.; Gu, X.-M.; Zhao, Y.-L. Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional nonlinear Riesz space-fractional reaction-diffusion equation. Appl. Numer. Math. 2020, 156, 346–363. [Google Scholar] [CrossRef]
- Sun, Z.-Z. Numerical Solutions of Partial Differential Equations, 2nd ed.; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Zhao, Y.-L.; Zhu, P.-Y.; Gu, X.-M.; Zhao, X.-L.; Jian, H.-Y. A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation. J. Sci. Comput. 2020, 83, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y. Application of Discrete Functional Analysis to the Finite Difference Methods; International Academic Publishers: Beijing, China, 1990. [Google Scholar]
- Van der Vorst, H.A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1992, 13, 631–644. [Google Scholar] [CrossRef]
- Bini, D.; Di Benedetto, F. A new preconditioner for the parallel solution of positive definite Toeplitz systems. In Proceedings of the Second Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’90, Island of Crete, Greece, 2–6 July 1990; AMC: New York, NY, USA, 1990; pp. 220–223. [Google Scholar] [CrossRef]
- Gu, X.-M.; Zhao, Y.-L.; Zhao, X.-L.; Carpentieri, B.; Huang, Y.-Y. A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations. Numer. Math. Theor. Meth. Appl. 2021, 14, 893–919. [Google Scholar]
M | |||||
---|---|---|---|---|---|
8 | 1.6125e − 03 | – | 8.6746e − 04 | – | |
16 | 7.9547e − 04 | 1.0194 | 4.2894e − 04 | 1.0160 | |
1.20 | 32 | 3.9507e − 04 | 1.0097 | 2.1329e − 04 | 1.0080 |
64 | 1.9688e − 04 | 1.0048 | 1.0635e − 04 | 1.0040 | |
128 | 9.8288e − 05 | 1.0022 | 5.3109e − 05 | 1.0018 | |
8 | 4.7362e − 03 | – | 2.6365e − 03 | – | |
16 | 2.3256e − 03 | 1.0261 | 1.2984e − 03 | 1.0219 | |
1.50 | 32 | 1.1525e − 03 | 1.0128 | 6.4439e − 04 | 1.0107 |
64 | 5.7374e − 04 | 1.0063 | 3.2102e − 04 | 1.0053 | |
128 | 2.8628e − 04 | 1.0030 | 1.6023e − 04 | 1.0025 | |
8 | 1.2993e − 02 | – | 7.4538e − 03 | – | |
16 | 6.3112e − 03 | 1.0417 | 3.6319e − 03 | 1.0373 | |
1.90 | 32 | 3.1120e − 03 | 1.0201 | 1.7935e − 03 | 1.0179 |
64 | 1.5455e − 03 | 1.0098 | 8.9131e − 04 | 1.0088 | |
128 | 7.7025e − 04 | 1.0047 | 4.4437e − 04 | 1.0042 |
N | |||||
---|---|---|---|---|---|
4 | 1.1988e − 03 | – | 6.3875e − 04 | – | |
8 | 2.9694e − 04 | 2.0133 | 1.5674e − 04 | 2.0269 | |
1.20 | 16 | 7.4054e − 05 | 2.0035 | 3.9116e − 05 | 2.0025 |
32 | 1.8502e − 05 | 2.0009 | 9.7746e − 06 | 2.0006 | |
64 | 4.6248e − 06 | 2.0002 | 2.4434e − 06 | 2.0001 | |
4 | 3.5560e − 03 | – | 1.9379e − 03 | – | |
8 | 8.7005e − 04 | 2.0489 | 4.7737e − 04 | 2.0213 | |
1.50 | 16 | 2.1633e − 04 | 2.0120 | 1.1889e − 04 | 2.0055 |
32 | 5.4010e − 05 | 2.0030 | 2.9695e − 05 | 2.0013 | |
64 | 1.3498e − 05 | 2.0007 | 7.4219e − 06 | 2.0004 | |
4 | 1.0923e − 02 | – | 6.1965e − 03 | – | |
8 | 2.6106e − 03 | 2.0649 | 1.5174e − 03 | 1.9285 | |
1.90 | 16 | 6.4524e − 04 | 2.0165 | 3.7556e − 04 | 1.9873 |
32 | 1.6085e − 04 | 2.0041 | 9.3655e − 05 | 1.9954 | |
64 | 4.0184e − 05 | 2.0010 | 2.3399e − 05 | 1.9992 |
M | |||||
---|---|---|---|---|---|
1.20 | 4 | 1.8489e − 05 | – | 6.3044e − 06 | – |
8 | 9.4453e − 06 | 0.9690 | 3.2208e − 06 | 0.9689 | |
16 | 4.7734e − 06 | 0.9846 | 1.6277e − 06 | 0.9846 | |
32 | 2.3998e − 06 | 0.9921 | 8.1828e − 07 | 0.9922 | |
1.50 | 4 | 1.8488e − 05 | – | 6.3044e − 06 | – |
8 | 9.4452e − 06 | 0.9689 | 3.2207e − 06 | 0.9690 | |
16 | 4.7732e − 06 | 0.9846 | 1.6276e − 06 | 0.9846 | |
32 | 2.3996e − 06 | 0.9922 | 8.1822e − 07 | 0.9922 | |
1.90 | 4 | 1.8489e − 05 | – | 6.3045e − 06 | – |
8 | 9.4456e − 06 | 0.9690 | 3.2208e − 06 | 0.9690 | |
16 | 4.7737e − 06 | 0.9845 | 1.6278e − 06 | 0.9845 | |
32 | 2.4001e − 06 | 0.9920 | 8.1838e − 07 | 0.9921 |
N | |||||
---|---|---|---|---|---|
1.20 | 4 | 4.7734e − 06 | – | 1.6181e − 06 | – |
8 | 1.2036e − 06 | 1.9877 | 4.1036e − 07 | 1.9793 | |
16 | 3.0226e − 07 | 1.9943 | 1.0299e − 07 | 1.9943 | |
32 | 7.6388e − 08 | 1.9844 | 2.6021e − 08 | 1.9855 | |
1.50 | 4 | 4.7732e − 06 | – | 1.6180e − 06 | – |
8 | 1.2034e − 06 | 1.9878 | 4.1030e − 07 | 1.9795 | |
16 | 3.0205e − 07 | 1.9943 | 1.0298e − 07 | 1.9943 | |
32 | 7.6178e − 08 | 1.9873 | 2.5954e − 08 | 1.9883 | |
1.90 | 4 | 4.7738e − 06 | – | 1.6182e − 06 | – |
8 | 1.2039e − 06 | 1.9874 | 4.1046e − 07 | 1.9791 | |
16 | 3.0264e − 07 | 1.9920 | 1.0314e − 07 | 1.9926 | |
32 | 7.6769e − 08 | 1.9790 | 2.6120e − 08 | 1.9814 |
N | Direct | I | ||||
---|---|---|---|---|---|---|
CPU | Iter | CPU | Iter | CPU | ||
16 | 0.026 | 15.0 | 0.041 | 4.0 | 0.021 | |
32 | 1.635 | 24.0 | 0.350 | 4.0 | 0.094 | |
1.20 | 64 | 130.982 | 37.0 | 2.354 | 5.0 | 0.532 |
128 | 23,599.059 | 50.4 | 41.207 | 5.0 | 5.248 | |
256 | out of memory | 59.9 | 844.715 | 5.0 | 38.040 | |
16 | 0.024 | 18.0 | 0.044 | 4.0 | 0.023 | |
32 | 1.614 | 33.0 | 0.479 | 4.0 | 0.094 | |
1.60 | 64 | 117.905 | 59.4 | 3.764 | 4.0 | 0.430 |
128 | 24,804.137 | 95.1 | 78.685 | 4.8 | 4.962 | |
256 | out of memory | 154.3 | 706.824 | 5.0 | 38.935 | |
16 | 0.020 | 19.0 | 0.050 | 3.0 | 0.016 | |
32 | 1.562 | 36.0 | 0.522 | 4.0 | 0.096 | |
1.70 | 64 | 751.896 | 64.0 | 4.065 | 4.0 | 0.428 |
128 | 32,105.020 | 109.4 | 89.902 | 4.0 | 4.185 | |
256 | out of memory | 188.2 | 858.853 | 4.0 | 30.393 | |
16 | 0.021 | 20.0 | 0.051 | 3.0 | 0.017 | |
32 | 1.689 | 43.7 | 0.636 | 3.0 | 0.071 | |
1.90 | 64 | 263.742 | 75.3 | 4.785 | 4.0 | 0.426 |
128 | 22,645.044 | 144.7 | 387.991 | 4.0 | 4.211 | |
256 | out of memory | 273.0 | 5633.458 | 4.0 | 30.324 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-Y.; Gu, X.-M.; Gong, Y.; Li, H.; Zhao, Y.-L.; Carpentieri, B. A Fast Preconditioned Semi-Implicit Difference Scheme for Strongly Nonlinear Space-Fractional Diffusion Equations. Fractal Fract. 2021, 5, 230. https://doi.org/10.3390/fractalfract5040230
Huang Y-Y, Gu X-M, Gong Y, Li H, Zhao Y-L, Carpentieri B. A Fast Preconditioned Semi-Implicit Difference Scheme for Strongly Nonlinear Space-Fractional Diffusion Equations. Fractal and Fractional. 2021; 5(4):230. https://doi.org/10.3390/fractalfract5040230
Chicago/Turabian StyleHuang, Yu-Yun, Xian-Ming Gu, Yi Gong, Hu Li, Yong-Liang Zhao, and Bruno Carpentieri. 2021. "A Fast Preconditioned Semi-Implicit Difference Scheme for Strongly Nonlinear Space-Fractional Diffusion Equations" Fractal and Fractional 5, no. 4: 230. https://doi.org/10.3390/fractalfract5040230
APA StyleHuang, Y. -Y., Gu, X. -M., Gong, Y., Li, H., Zhao, Y. -L., & Carpentieri, B. (2021). A Fast Preconditioned Semi-Implicit Difference Scheme for Strongly Nonlinear Space-Fractional Diffusion Equations. Fractal and Fractional, 5(4), 230. https://doi.org/10.3390/fractalfract5040230