Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for the Novel Fractional Order Pantograph Singular System
Abstract
:1. Introduction
- The design of a novel fractional order pantograph singular system (FOPSS) is presented using the suitable derivation process.
- The computing process based on machine learning or soft computing knacks is implemented to solve the novel FOPSS using the applications of the Meyer wavelets based fractional neural network.
- A novel FOPSS is presented using the pantograph differential system (PDS) and fundamental form of the second-order singular model.
- The numerical performance of the novel FOPSS is obtained by using the designed approach FMWs-NN-PSOIPA, which is used to compare the obtained results and to perform the values of the absolute error (AE).
- The Meyer computing solvers via FMWs-NN-PSOIPA is applied to solve three examples based on the novel FOPSS to authenticate the convergence, precision and stability.
- The reliability of the proposed FMWS-NN-PSOIPA is accessible using the statistical procedures in terms of semi-interquartile range (S.I.R), Theil’s inequality coefficient (T.I.C) and variance account for (VAF).
2. Construction of the Novel FOPSS
3. Methodology: FMWs-NN-PSOIPA
3.1. Objective Function: FMWs-NN
3.2. Optimization of the Network
3.3. Performance Indices
4. Simulations and Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sabir, Z.; Raja, M.A.Z.; Guirao, J.L.G.; Shoaib, M. A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems. Alex. Eng. J. 2021, 60, 2641–2659. [Google Scholar] [CrossRef]
- Momani, S.; Ibrahim, R.W. On a fractional integral equation of periodic functions involving Weyl–Riesz operator in Banach algebras. J. Math. Anal. Appl. 2008, 339, 1210–1219. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, B.; Rivero, M.; Trujillo, J.J. On systems of linear fractional differential equations with constant coefficients. Appl. Math. Comput. 2007, 187, 68–78. [Google Scholar] [CrossRef]
- Yu, F. Integrable coupling system of fractional soliton equation hierarchy. Phys. Lett. A 2009, 373, 3730–3733. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248. [Google Scholar] [CrossRef] [Green Version]
- Diethelm, K.; Freed, A.D. On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In Scientific Computing in Chemical Engineering II; Springer: Berlin/Heidelberg, Germany, 1999; pp. 217–224. [Google Scholar]
- Zhang, Y.; Sun, H.G.; Stowell, H.H.; Zayernouri, M.; Hansen, S.E. A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 2017, 102, 29–46. [Google Scholar] [CrossRef]
- Evans, R.M.; Katugampola, U.N.; Edwards, D.A. Applications of fractional calculus in solving Abel-type integral equations: Surface–volume reaction problem. Comput. Math. Appl. 2017, 73, 1346–1362. [Google Scholar] [CrossRef] [Green Version]
- Engheia, N. On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 1997, 39, 35–46. [Google Scholar] [CrossRef]
- Daou, R.A.Z.; Samarani, F.E.; Yaacoub, C.; Moreau, X. Fractional Derivatives for Edge Detection: Application to Road Obstacles. In Smart Cities Performability, Cognition, & Security; Springer: Cham, Switzerland, 2020; pp. 115–137. [Google Scholar]
- Torvik, P.J.; Bagley, R.L. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Aman, S.; Khan, I.; Ismail, Z.; Salleh, M.Z. Applications of fractional derivatives to nanofluids: Exact and numerical solutions. Math. Model. Nat. Phenom. 2018, 13, 2. [Google Scholar] [CrossRef]
- Matlob, M.A.; Jamali, Y. The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: A primer. Crit. Rev. Biomed. Eng. 2019, 47, 249–276. [Google Scholar] [CrossRef]
- Yang, X.J.; Machado, J.A.T.; Cattani, C.; Gao, F. On a fractal LC-electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2017, 47, 200–206. [Google Scholar] [CrossRef]
- Sabir, Z.; Günerhan, H.; Guirao, J.L.G. On a new model based on third-order nonlinear multisingular functional differential equations. Math. Probl. Eng. 2020, 2020, 1683961. [Google Scholar] [CrossRef] [Green Version]
- Abdelkawy, M.A.; Sabir, Z.; Guirao, J.L.G.; Saeed, T. Numerical investigations of a new singular second-order nonlinear coupled functional Lane–Emden model. Open Phys. 2020, 18, 770–778. [Google Scholar] [CrossRef]
- Sabir, Z.; Sakar, M.G.; Yeskindirova, M.; Saldir, O. Numerical investigations to design a novel model based on the fifth order system of Emden–Fowler equations. Theor. Appl. Mech. Lett. 2020, 10, 333–342. [Google Scholar] [CrossRef]
- Adel, W.; Sabir, Z. Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method. Eur. Phys. J. Plus 2020, 135, 427. [Google Scholar] [CrossRef]
- Sabir, Z.; Amin, F.; Pohl, D.; Guirao, J.L.G. Intelligence computing approach for solving second order system of Emden–Fowler model. J. Intell. Fuzzy Syst. 2020, 38, 7391–7406. [Google Scholar] [CrossRef]
- Guirao, J.L.G.; Sabir, Z.; Saeed, T. Design and numerical solutions of a novel third-order nonlinear Emden–Fowler delay differential model. Math. Probl. Eng. 2020, 2020, 7359242. [Google Scholar] [CrossRef]
- Sabir, Z.; Wahab, H.A.; Umar, M.; Sakar, M.G.; Raja, M.A.Z. Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation. Math. Comput. Simul. 2020, 172, 1–14. [Google Scholar] [CrossRef]
- Ockendon, J.R.; Tayler, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. London A Math. Phys. Sci. 1971, 322, 447–468. [Google Scholar]
- Wake, G.C.; Cooper, S.; Kim, H.K.; Van-Brunt, B. Functional differential equations for cell-growth models with dispersion. Commun. Appl. Anal. 2000, 4, 561–574. [Google Scholar]
- Bellen, A.; Guglielmi, N.; Torelli, L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl. Numer. Math. 1997, 24, 279–293. [Google Scholar] [CrossRef]
- Sinha, A.S.C. Stabilisation of time-varying infinite delay control systems. IEE Proc. D-Control Theory Appl. 1993, 140, 60–63. [Google Scholar] [CrossRef]
- Ezz-Eldien, S.S.; Wang, Y.; Abdelkawy, M.A.; Zaky, M.A.; Aldraiweesh, A.A.; Machado, J.T. Chebyshev spectral methods for multi-order fractional neutral pantograph equations. Nonlinear Dyn. 2020, 100, 3785–3797. [Google Scholar] [CrossRef]
- Ezz-Eldien, S.S. On solving systems of multi-pantograph equations via spectral tau method. Appl. Math. Comput. 2018, 321, 63–73. [Google Scholar] [CrossRef]
- Anakira, N.R.; Jameel, A.; Alomari, A.K.; Saaban, A.; Almahameed, M.; Hashim, I. Approximate solutions of multi-pantograph type delay differential equations using multistage optimal homotopy asymptotic method. J. Math. Fundam. Sci. 2018, 50, 221–232. [Google Scholar] [CrossRef]
- Isah, A.; Phang, C. A collocation method based on Genocchi operational matrix for solving Emden-Fowler equations. J. Phys. Conf. Ser. 2020, 1489, 012022. [Google Scholar] [CrossRef]
- Yousefi, S.A.; Noei-Khorshidi, M.; Lotfi, A. Convergence analysis of least squares-Epsilon-Ritz algorithm for solving a general class of pantograph equations. Kragujev. J. Math. 2018, 42, 431–439. [Google Scholar] [CrossRef]
- AŞI, Ş.Y.B.; Ismailov, N.A. Taylor operation method for solutions of generalized pantograph type delay differential equations. Turk. J. Math. 2018, 42, 395–406. [Google Scholar]
- Sabir, Z.; Guirao, J.L.G.; Saeed, T. Solving a novel designed second order nonlinear Lane–Emden delay differential model using the heuristic techniques. Appl. Soft Comput. 2021, 102, 107105. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z.; Sánchez, Y.G. A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever. Results Phys. 2020, 19, 103585. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z. Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl. Soft Comput. 2019, 80, 506–524. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Umar, M.; Shoaib, M. Neuro-swarm intelligent computing to solve the second-order singular functional differential model. Eur. Phys. J. Plus 2020, 135, 474. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Wahab, H.A.; Shoaib, M.; Gómez-Aguilar, J.F. Integrated neuro-evolution heuristic with sequential quadratic programming for second-order prediction differential models. Numer. Methods Partial. Differ. Equ. 2020, 1–17. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Mehmood, J.; Sabir, Z.; Nasab, A.K.; Manzar, M.A. Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput. Appl. 2019, 31, 793–812. [Google Scholar] [CrossRef]
- Sabir, Z.; Umar, M.; Guirao, J.L.G.; Shoaib, M.; Raja, M.A.Z. Integrated intelligent computing paradigm for nonlinear multi-singular third-order Emden–Fowler equation. Neural Comput. Appl. 2020, 33, 3417–3436. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z.; Shoaib, M.; Gupta, M.; Sánchez, Y.G. A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics. Symmetry 2020, 12, 1628. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Umar, M.; Sabir, Z.; Khan, J.A.; Baleanu, D. A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur. Phys. J. Plus 2018, 133, 364. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Le, D.N.; Aly, A.A. A neuro-swarming intelligent heuristic for second-order nonlinear Lane–Emden multi-pantograph delay differential system. Complex Intell. Syst. 2021, 1–14. [Google Scholar] [CrossRef]
- Sabir, Z.; Baleanu, D.; Raja, M.A.Z.; Guirao, J.L.G. Design of neuro-swarming heuristic solver for multi-pantograph singular delay differential equation. Fractals 2021, 29, 2140022. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Arbi, A.; Altamirano, G.C.; Cao, J. Neuro-swarms intelligent computing using Gudermannian kernel for solving a class of second order Lane-Emden singular nonlinear model. AIMS Math 2021, 6, 2468–2485. [Google Scholar] [CrossRef]
- Khan, I.; Raja, M.A.Z.; Khan, M.A.R.; Shoaib, M.; Islam, S.; Shah, Z. Design of backpropagated intelligent networks for nonlinear second-order Lane–Emden pantograph delay differential systems. Arab. J. Sci. Eng. 2021, 1–14. [Google Scholar] [CrossRef]
- Nisar, K.; Sabir, Z.; Raja, M.A.Z.; Ibrahim, A.A.A.; Erdogan, F.; Haque, M.R.; Rodrigues, J.J.; Rawat, D.B. Design of Morlet Wavelet Neural Network for Solving a Class of Singular Pantograph Nonlinear Differential Models. IEEE Access 2021, 9, 77845–77862. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Kamal, A.; Guirao, J.L.G.; Le, D.-N.; Saeed, T.; Salama, M. Neuro-swarm heuristic unsign interior-point algorithm to solver a third kind of multi-singular nonlinear systems. Math Biosci. Eng. 2021, 18, 5285–5308. [Google Scholar] [CrossRef] [PubMed]
- Nisar, K.; Sabir, Z.; Raja, M.A.Z.; Ibrahim, A.; Asri, A.; Rodrigues, J.J.P.C.; Khan, A.S.; Gupta, M.; Kamal, A.; Rawat, D.B. Evolutionary Integrated Heuristic with Gudermannian Neural Networks for Second Kind of Lane–Emden Nonlinear Singular Models. Appl. Sci. 2021, 11, 4725. [Google Scholar] [CrossRef]
- Sabir, Z.; Nisar, K.; Raja, M.A.Z.; Ibrahim, A.A.B.A.; Rodrigues, J.J.; Al-Basyouni, K.S.; Mahmoud, S.R.; Rawat, D.B. Design of Morlet wavelet neural network for solving the higher order singular nonlinear differential equations. Alex. Eng. J. 2021, 60, 5935–5947. [Google Scholar] [CrossRef]
- Rosca, D. Wavelet analysis on some surfaces of revolution via area preserving projection. Appl. Comput. Harmon. Anal. 2011, 30, 262–272. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, Y.; Khan, R.; Ullah, F.; Aslam, M.S.; Raja, M.A.Z. Design of fractional swarming strategy for solution of optimal reactive power dispatch. Neural Comput. Appl. 2020, 32, 10501–10518. [Google Scholar] [CrossRef]
- Sharif, M.; Amin, J.; Raza, M.; Yasmin, M.; Satapathy, S.C. An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognit. Lett. 2020, 129, 150–157. [Google Scholar] [CrossRef]
- Tabibi, S.; Ghaffari, A. Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wirel. Pers. Commun. 2019, 104, 199–216. [Google Scholar] [CrossRef]
- Muhammad, Y.; Khan, R.; Raja, M.A.Z.; Ullah, F.; Chaudhary, N.I.; He, Y. Design of fractional swarm intelligent computing with entropy evolution for optimal power flow problems. IEEE Access 2020, 8, 111401–111419. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, K.; Yang, J.; Wu, F.; Liu, H. Applying improved particle swarm optimization for dynamic service composition focusing on quality of service evaluations under hybrid networks. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718761583. [Google Scholar] [CrossRef] [Green Version]
- Wambacq, J.; Ulloa, J.; Lombaert, G.; François, S. Interior-point methods for the phase-field approach to brittle and ductile fracture. Comput. Methods Appl. Mech. Eng. 2021, 375, 113612. [Google Scholar] [CrossRef]
- Huo, D.; le Blond, S.; Gu, C.; Wei, W.; Yu, D. Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach. Int. J. Electr. Power Energy Syst. 2018, 95, 36–46. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Ahmed, U.; Zameer, A.; Kiani, A.K.; Chaudhary, N.I. Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem. Neural Comput. Appl. 2019, 31, 447–475. [Google Scholar] [CrossRef]
- Theodorakatos, N.P. A nonlinear well-determined model for power system observability using Interior-Point methods. Measurement 2020, 152, 107305. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Shah, F.H.; Alaidarous, E.S.; Syam, M.I. Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl. Soft Comput. 2017, 52, 605–629. [Google Scholar] [CrossRef]
- Dewasurendra, M.; Vajravelu, K. On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer. Appl. Math. Nonlinear Sci. 2018, 3, 1–14. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Bulut, H.; Sulaiman, T.A. New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method. Appl. Math. Nonlinear Sci. 2019, 4, 129–138. [Google Scholar] [CrossRef] [Green Version]
- İlhan, E.; Kıymaz, I.O. A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl. Math. Nonlinear Sci. 2020, 5, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Durur, H.; Tasbozan, O.; Kurt, A. New analytical solutions of conformable time fractional bad and good modified Boussinesq equations. Appl. Math. Nonlinear Sci. 2020, 5, 447–454. [Google Scholar] [CrossRef]
- Baig, A.Q.; Naeem, M.; Gao, W. Revan and hyper-Revan indices of Octahedral and icosahedral networks. Appl. Math. Nonlinear Sci. 2018, 3, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.K. A new computational algorithm for the solution of second order initial value problems in ordinary differential equations. Appl. Math. Nonlinear Sci. 2018, 3, 167–174. [Google Scholar] [CrossRef] [Green Version]
Index | Mode | Proposed Outcomes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | ||
1 | Min | 4 × 10−4 | 3 × 10−4 | 1 × 10−3 | 8 × 10−4 | 4 × 10−3 | 4 × 10−4 | 1 × 10−3 | 1 × 10−2 | 3 × 10−3 | 3 × 10−5 |
Max | 4 × 10−2 | 3 × 10−2 | 3 × 10−2 | 3 × 10−2 | 4 × 10−2 | 6 × 10−2 | 8 × 10−2 | 9 × 10−2 | 7 × 10−2 | 5 × 10−3 | |
MED | 6 × 10−3 | 1 × 10−2 | 1 × 10−2 | 2 × 10−2 | 3 × 10−2 | 4 × 10−2 | 5 × 10−2 | 5 × 10−2 | 3 × 10−2 | 1 × 10−3 | |
Mean | 4 × 10−3 | 1 × 10−2 | 1 × 10−2 | 2 × 10−2 | 3 × 10−2 | 5 × 10−2 | 6 × 10−2 | 6 × 10−2 | 3 × 10−2 | 3 × 10−4 | |
S.I.R | 6 × 10−3 | 6 × 10−3 | 6 × 10−3 | 7 × 10−3 | 8 × 10−3 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−3 | |
STD | 1 × 10−3 | 2 × 10−3 | 3 × 10−3 | 4 × 10−3 | 4 × 10−3 | 5 × 10−3 | 6 × 10−3 | 7 × 10−3 | 5 × 10−3 | 8 × 10−5 | |
2 | Min | 3 × 10−4 | 8.7 × 10−5 | 1 × 10−3 | 2 × 10−3 | 8 × 10−3 | 2 × 10−2 | 2 × 10−2 | 2 × 10−2 | 8 × 10−3 | 6 × 10−6 |
Max | 7 × 10−2 | 8 × 10−2 | 8 × 10−2 | 8 × 10−2 | 7 × 10−2 | 7 × 10−2 | 8 × 10−2 | 1 × 10−1 | 9 × 10−2 | 1 × 10−2 | |
MED | 9 × 10−3 | 1 × 10−2 | 1 × 10−2 | 2 × 10−2 | 3 × 10−2 | 4 × 10−2 | 6 × 10−2 | 6 × 10−2 | 4 × 10−2 | 1 × 10−4 | |
Mean | 7 × 10−3 | 6 × 10−3 | 1 × 10−2 | 2 × 10−2 | 3 × 10−2 | 4 × 10−2 | 6 × 10−2 | 6 × 10−2 | 3 × 10−2 | 1 × 10−3 | |
S.I.R | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 2 × 10−2 | 2 × 10−3 | |
STD | 2 × 10−3 | 6 × 10−3 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 6 × 10−4 | |
3 | Min | 1 × 10−5 | 4 × 10−5 | 2 × 10−3 | 3 × 10−3 | 1 × 10−2 | 9 × 10−3 | 6 × 10−3 | 3 × 10−2 | 1 × 10−2 | 7 × 10−4 |
Max | 7 × 10−2 | 1 × 10−1 | 1 × 10−1 | 1 × 10−1 | 1 × 10−1 | 1 × 10−1 | 1 × 10−1 | 1 × 10−1 | 1 × 10−1 | 4 × 10−3 | |
MED | 9 × 10−3 | 1 × 10−2 | 2 × 10−2 | 3 × 10−2 | 5 × 10−2 | 6 × 10−2 | 7 × 10−2 | 7 × 10−2 | 5 × 10−2 | 1 × 10−3 | |
Mean | 6 × 10−3 | 5 × 10−3 | 1 × 10−2 | 2 × 10−2 | 3 × 10−2 | 5 × 10−2 | 7 × 10−2 | 8 × 10−2 | 6 × 10−2 | 1 × 10−3 | |
S.I.R | 1 × 10−2 | 2 × 10−2 | 2 × 10−2 | 2 × 10−2 | 2 × 10−2 | 3 × 10−2 | 2 × 10−2 | 1 × 10−2 | 1 × 10−2 | 6 × 10−4 | |
STD | 2 × 10−3 | 9 × 10−3 | 1 × 10−2 | 1 × 10−2 | 2 × 10−2 | 2 × 10−2 | 1 × 10−2 | 6 × 10−3 | 1 × 10−2 | 1 × 10−5 |
Index | G.FIT | G.TIC | G.ENSE | G.EVAF | ||||
---|---|---|---|---|---|---|---|---|
Min | SI.R | Min | SIR | MIN | SI.R | Min | SI.R | |
1 | 2.556 × 10−6 | 2.285 × 10−5 | 7.728 × 10−6 | 2.673 × 10−7 | 2.291 × 10−3 | 3.330 × 10−5 | 1.819 × 10−2 | 2.636 × 10−2 |
2 | 5.527 × 10−7 | 3.006 × 10−5 | 1.007 × 10−5 | 3.272 × 10−7 | 3.844 × 10−3 | 6.650 × 10−5 | 2.938 × 10−2 | 5.920 × 10−4 |
3 | 5.399 × 10−5 | 7.898 × 10−7 | 1.130 × 10−5 | 3.491 × 10−8 | 2.291 × 10−4 | 3.330 × 10−4 | 7.908 × 10−3 | 7.100 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabir, Z.; Raja, M.A.Z.; Guirao, J.L.G.; Saeed, T. Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for the Novel Fractional Order Pantograph Singular System. Fractal Fract. 2021, 5, 277. https://doi.org/10.3390/fractalfract5040277
Sabir Z, Raja MAZ, Guirao JLG, Saeed T. Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for the Novel Fractional Order Pantograph Singular System. Fractal and Fractional. 2021; 5(4):277. https://doi.org/10.3390/fractalfract5040277
Chicago/Turabian StyleSabir, Zulqurnain, Muhammad Asif Zahoor Raja, Juan L. G. Guirao, and Tareq Saeed. 2021. "Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for the Novel Fractional Order Pantograph Singular System" Fractal and Fractional 5, no. 4: 277. https://doi.org/10.3390/fractalfract5040277
APA StyleSabir, Z., Raja, M. A. Z., Guirao, J. L. G., & Saeed, T. (2021). Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for the Novel Fractional Order Pantograph Singular System. Fractal and Fractional, 5(4), 277. https://doi.org/10.3390/fractalfract5040277