Results for Fuzzy Mappings and Stability of Fuzzy Sets with Applications
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Stability of Fuzzy Fixed Point -Level Sets
5. Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Weiss, M.D. Fixed points and induced fuzzy topologies for fuzzy sets. J. Math. Anal. Appl. 1975, 50, 142–150. [Google Scholar] [CrossRef]
- Butnariu, D. Fixed points for fuzzy mappings. Fuzzy Sets Syst. 1982, 7, 191–207. [Google Scholar] [CrossRef]
- Heilpern, S. Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 1981, 83, 566–569. [Google Scholar] [CrossRef]
- Nadler, B.S. Multivalued contraction mappings. Pacific J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Azam, A. Fuzzy Fixed Points Of Fuzzy Mappings via A Rational Inequality. Hacet. J. Math. Stat. 2011, 40, 421–431. [Google Scholar]
- Rashid, M.; Shahzad, A.; Azam, A. Fixed point theorems for L-fuzzy mappings in quasi-pseudo metric spaces. J. Intell. Fuzzy Syst. 2017, 32, 499–507. [Google Scholar] [CrossRef]
- Robinson, C. Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Strogatz, S. Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry, and Engineering; Westview Press: Boulder, CO, USA, 2001. [Google Scholar]
- Bose, R.K.; Mukherjee, R.N. Stability of fixed point sets and common fixed points of families of mappings. Indian J. Pure Appl. Math. 1980, 9, 1130–1138. [Google Scholar]
- Brzdek, J.; Cadariu, L.; Cieplinski, K. Fixed Point Theory and the Ulam Stability. J. Funct. Spaces 2014, 2014, 829419. [Google Scholar] [CrossRef]
- Brzdek, J.; Cieplinski, K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal. 2011, 74, 6861–6867. [Google Scholar] [CrossRef]
- Brzdek, J. Banach limit, fixed points and Ulam stability. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2022, 116, 79. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Metiya, N.; Bandyopadhyay, C. Fixed points of multivalued α-admissible mappings and stability of fixed point sets in metric spaces. Rend. Circ. Mat. Palermo 2015, 64, 43–55. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Metiya, N.; Som, T.; Bandyopadhyay, C. Multivalued Fixed Point Results and Stability of Fixed Point Sets in Metric Spaces. Facta Univ. Ser. Math. Inform. 2015, 30, 501–512. [Google Scholar]
- El-Hady, E.-S.; El-Fassi, I.-I. Stability of the Equation of q-Wright Affine Functions in Non-Archimedean n,β-Banach Spaces. Symmetry 2022, 14, 633. [Google Scholar] [CrossRef]
- Markin, J.T. A fixed point stability theorem for nonexpansive set valued mappings. J. Math. Anal. Appl. 1976, 54, 441–443. [Google Scholar] [CrossRef]
- Shen, M.; Hong, S. Common fixed points for generalized contractive multivalued operators in complete metric spaces. Appl. Math. Lett. 2009, 22, 1864–1869. [Google Scholar] [CrossRef]
- Hitzler, P.; Seda, A.K. Dislocated Topologies. J. Electr. Eng. 2000, 51, 3–7. [Google Scholar]
- Alansari, M.; Shagari, M.S.; Azam, A. Fuzzy fixed point theorems and Ulam-Hyers stability of fuzzy set-valued maps. Math. Slovaca 2022, 72, 459–482. [Google Scholar] [CrossRef]
- Hussain, N.; Arshad, M.; Shoaib, A.; Fahimuddin. Common Fixed Point results for α-ψ-contractions on a metric space endowed with graph. J. Inequal. Appl. 2014, 2014, 136. [Google Scholar] [CrossRef]
- Shoaib, A.; Kumam, P.; Shahzad, A.; Phiangsungnoen, S.; Mahmood, Q. Fixed point results for fuzzy mappings in a b-metric space. Fixed Point Theory Appl. 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Shahzad, A.; Rasham, T.; Marino, G.; Shoaib, A. On fixed point result for α*-ψ Dominated Fuzzy Contractive Mapping with Graph. J. Intell. Fuzzy Syst. 2020, 38, 3093–31033. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, J. New distance measure for Fermatean fuzzy sets and its applications. Int. J. Intell. Syst. 2021, 37, 1903–1930. [Google Scholar] [CrossRef]
- Jeevaraj, S. Ordering of interval-valued Fermatean fuzzy sets and its applications. Expetr Syst. Appl. 2021, 185, 115613. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, A.; Shoaib, A.; Mlaiki, N.; Subhi Aiadi, S. Results for Fuzzy Mappings and Stability of Fuzzy Sets with Applications. Fractal Fract. 2022, 6, 556. https://doi.org/10.3390/fractalfract6100556
Shahzad A, Shoaib A, Mlaiki N, Subhi Aiadi S. Results for Fuzzy Mappings and Stability of Fuzzy Sets with Applications. Fractal and Fractional. 2022; 6(10):556. https://doi.org/10.3390/fractalfract6100556
Chicago/Turabian StyleShahzad, Aqeel, Abdullah Shoaib, Nabil Mlaiki, and Suhad Subhi Aiadi. 2022. "Results for Fuzzy Mappings and Stability of Fuzzy Sets with Applications" Fractal and Fractional 6, no. 10: 556. https://doi.org/10.3390/fractalfract6100556
APA StyleShahzad, A., Shoaib, A., Mlaiki, N., & Subhi Aiadi, S. (2022). Results for Fuzzy Mappings and Stability of Fuzzy Sets with Applications. Fractal and Fractional, 6(10), 556. https://doi.org/10.3390/fractalfract6100556