Analysis of a Hidden-Memory Variably Distributed-Order Time-Fractional Diffusion Equation
Abstract
:1. Introduction
- (i)
- There exists a constant which satisfies that for and .
- (ii)
- For , , and .
2. Analysis of Hidden-Memory Variably Distributed-Order ODE
3. Analysis of the Hidden-Memory Variably Distributed-Order PDE
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dentz, M.; Cortis, A.; Scher, H.; Berkowitz, B. Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport. Adv. Water Resour. 2004, 27, 155–173. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Sikorskii, A. Stochastic Models for Fractional Calculus; De Gruyter Studies in Mathematics; De Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Pudlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Wang, F.; Zhang, Z.; Zhou, Z. A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations. J. Comput. Appl. Math. 2021, 386, 113233. [Google Scholar] [CrossRef]
- Yu, B.; Zheng, X.; Zhang, P.; Zhang, L. Computing solution landscape of nonlinear space-fractional problems via fast approximation algorithm. J. Comput. Phys. 2022, 468, 111513. [Google Scholar] [CrossRef]
- Zheng, X. Approximate inversion for Abel integral operators of variable exponent and applications to fractional Cauchy problems. Fract. Calc. Appl. Anal. 2022, 25, 1585–1603. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H. An optimal-order numerical approximation to variable-order spacefractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal. 2020, 58, 330–352. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H. Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal. 2021, 41, 1522–1545. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y.; Stojanović, M. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 2013, 16, 297–316. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- King, G.E. Hydraulic Fracturing. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012; SPE 152596. Volume 101. [Google Scholar]
- Mainardi, F.; Pagnini, G.; Gorenflo, R. Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 2007, 187, 295–305. [Google Scholar] [CrossRef]
- Ye, H.; Liu, F.; Anh, V. Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 2015, 298, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Yin, M.; Ma, R.; Zhang, Y.; Wei, S.; Tick, G.; Wang, J.; Sun, Z.; Sun, H.; Zheng, C. A distributed-order time fractional derivative model for simulating bimodal sub-diffusion in heterogeneous media. J. Hydrol. 2020, 591, 125504. [Google Scholar] [CrossRef]
- Jia, J.; Wang, H.; Zheng, X. A fast numerical scheme for a variably distributed-order time-fractional diffusion equation and its analysis. Comput. Math. Appl. 2022, 108, 24–32. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, X.; Wang, H. A variably distributed-order time-fractional diffusion equation: Analysis and approximation. Comput. Meth. Appl. Mech. Engrg. 2020, 367, 113118. [Google Scholar] [CrossRef]
- Jia, J.; Wang, H. Analysis of a hidden memory variably distributed-order space-fractional diffusion equation. Appl. Math. Lett. 2022, 124, 107617. [Google Scholar] [CrossRef]
- Jia, J.; Wang, H.; Zheng, X. Numerical analysis of a fast finite element method for a hidden-memory variable-order time-fractional diffusion equation. J. Sci. Comput. 2022, 91, 54. [Google Scholar] [CrossRef]
- Sun, H.; Chen, W.; Wei, H.; Chen, Y.Q. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 2011, 193, 185. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H. An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation. SIAM J. Numer. Anal. 2020, 58, 2492–2514. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H. A hidden-memory variable-order fractional optimal control model: Analysis and approximation. SIAM J. Control Optim. 2021, 59, 1851–1880. [Google Scholar] [CrossRef]
- Ervin, V.J. Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces. J. Diff. Equ. 2021, 278, 294–325. [Google Scholar] [CrossRef]
- Jin, B.; Li, B.; Zhou, Z. Subdiffusion with a time-dependent coefficient: Analysis and numerical solution. Math. Comput. 2019, 88, 2157–2186. [Google Scholar] [CrossRef]
- Le, K.; McLean, W.; Stynes, M. Existence, uniqueness and regularity of the solution of the time-fractional Fokker-Planck equation with general forcing. Commun. Pur. Appl. Anal. 2019, 18, 2765–2787. [Google Scholar] [CrossRef] [Green Version]
- Stynes, M.; O’Riordan, E.; Gracia, J.L. Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM J. Numer. Anal. 2017, 55, 1057–1079. [Google Scholar] [CrossRef] [Green Version]
- Schumer, R.; Benson, D.A.; Meerschaert, M.M.; Baeumer, B. Fractal mobile/immobile solute transport. Water Resour. Res. 2003, 39, 1–12. [Google Scholar]
- Zhang, Y.; Green, C.; Baeumer, B. Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings. J. Hydrol. 2014, 512, 315–331. [Google Scholar] [CrossRef]
- Webb, J. Weakly singular Gronwall inequalities and applications to fractional differential equations. J. Math. Anal. Appl. 2019, 471, 692–711. [Google Scholar] [CrossRef]
- Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef]
- Adams, R.; Fournier, J. Sobolev Spaces; Elsevier: San Diego, CA, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J. Analysis of a Hidden-Memory Variably Distributed-Order Time-Fractional Diffusion Equation. Fractal Fract. 2022, 6, 627. https://doi.org/10.3390/fractalfract6110627
Jia J. Analysis of a Hidden-Memory Variably Distributed-Order Time-Fractional Diffusion Equation. Fractal and Fractional. 2022; 6(11):627. https://doi.org/10.3390/fractalfract6110627
Chicago/Turabian StyleJia, Jinhong. 2022. "Analysis of a Hidden-Memory Variably Distributed-Order Time-Fractional Diffusion Equation" Fractal and Fractional 6, no. 11: 627. https://doi.org/10.3390/fractalfract6110627
APA StyleJia, J. (2022). Analysis of a Hidden-Memory Variably Distributed-Order Time-Fractional Diffusion Equation. Fractal and Fractional, 6(11), 627. https://doi.org/10.3390/fractalfract6110627