Existence and Ulam–Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order with Nonlocal Generalized Conditions via Generalized Liouville–Caputo Derivative
Abstract
:1. Introduction
2. Essential Background and Representation of Solutions
- 1.
- if
- 2.
- if
3. Existence Results for the Problem (6) and (7)
4. Ulam–Hyers Stability Results for the Problem (6) and (7)
5. Existence Results for the Problem (6) and (8)
6. Conclusions
- If , problem (6) is generalized, and the Liouville–Caputo-type reduces to the classical Caputo form.
- If , the generalized Riemann–Liouville integral boundary conditions reduce to the Riemann–Liouville integral conditions. Then, the boundary conditions (7) reduce to multi-point and Riemann–Liouville integral conditions.
- If , the generalized Riemann–Liouville integral boundary conditions reduce to the classical integral conditions. Then the boundary conditions (7) reduces to multi-point and classical integral conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klafter, J.; Lim, S.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2012. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Valerio, D.; Machado, J.T.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Bitsadze, A.; Samarskii, A. On some simple generalizations of linear elliptic boundary problems. Soviet Math. Dokl. 1969, 10, 398–400. [Google Scholar]
- Ciegis, R.; Bugajev, A. Numerical approximation of one model of bacterial self-organization. Nonlinear Anal. Model. Control. 2012, 17, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, M.; Alzabut, J.; Baleanu, D.; Samei, M.E.; Zada, A. Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Adv. Differ. Equ. 2021, 2021, 1–46. [Google Scholar] [CrossRef]
- Matar, M.M.; Alzabut, J.; Jonnalagadda, J.M. A coupled system of nonlinear Caputo–Hadamard Langevin equations associated with nonperiodic boundary conditions. Math. Methods Appl. Sci. 2020, 44, 2650–2670. [Google Scholar] [CrossRef]
- Berhail, A.; Tabouche, N.; Matar, M.M.; Alzabut, J. Boundary value problem defined by system of generalized Sturm–Liouville and Langevin Hadamard fractional differential equations. Math. Methods Appl. Sci. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Coupled systems of Riemann–Liouville fractional differential equations with Hadamard fractional integral boundary conditions. J. Nonlinear Sci. Appl. 2016, 9, 295–308. [Google Scholar] [CrossRef]
- Muthaiah, S.; Baleanu, D.; Thangaraj, N.G. Existence and Hyers–Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Math. 2021, 6, 168–194. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Nieto, J.J. Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions. Appl. Math. Lett. 2021, 116, 107018. [Google Scholar] [CrossRef]
- Alsaedi, A.; Alghanmi, M.; Ahmad, B.; Ntouyas, S.K. Generalized Liouville–Caputo fractional differential equations and inclusions with nonlocal generalized fractional integral and multipoint boundary conditions. Symmetry 2018, 10, 667. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Alzabut, J.; Hussain, A.; Subramanian, M.; Rezapour, S. On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv. Differ. Equ. 2021, 2021, 1–23. [Google Scholar] [CrossRef]
- Baleanu, D.; Alzabut, J.; Jonnalagadda, J.; Adjabi, Y.; Matar, M. A coupled system of generalized Sturm–Liouville problems and Langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives. Adv. Differ. Equ. 2020, 2020, 1–30. [Google Scholar] [CrossRef]
- Muthaiah, S.; Baleanu, D. Existence of solutions for nonlinear fractional differential equations and inclusions depending on lower-order fractional derivatives. Axioms 2020, 9, 44. [Google Scholar] [CrossRef]
- Baleanu, D.; Hemalatha, S.; Duraisamy, P.; Pandiyan, P.; Muthaiah, S. Existence results for coupled differential equations of non-integer order with Riemann–Liouville, Erdelyi-Kober integral conditions. AIMS Math. 2021, 6, 13004–13023. [Google Scholar] [CrossRef]
- Aljoudi, S.; Ahmad, B.; Alsaedi, A. Existence and uniqueness results for a coupled system of Caputo-Hadamard fractional differential equations with nonlocal Hadamard type integral boundary conditions. Fractal Fract. 2020, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Aljoudi, S.; Ahmad, B.; Nieto, J.J.; Alsaedi, A. On coupled Hadamard type sequential fractional differential equations with variable coefficients and nonlocal integral boundary conditions. Filomat 2017, 31, 6041–6049. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Ntouyas, S.K.; Alsaedi, A. Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions. Appl. Math. Lett. 2018, 84, 111–117. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Ntouyas, S.K.; Alsaedi, A. A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions. AIMS Math. 2019, 4, 26–42. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Alsaedi, A. Existence results for a nonlinear coupled system involving both Caputo and Riemann–Liouville generalized fractional derivatives and coupled integral boundary conditions. Rocky Mt. J. Math. 2020, 50, 1901–1922. [Google Scholar] [CrossRef]
- Tavazoei, M.; Asemani, M.H. On robust stability of incommensurate fractional-order systems. Commun. Nonlinear Sci. Numer. Simul. 2020, 90, 105344. [Google Scholar] [CrossRef]
- Dasbasi, B. Stability analysis of an incommensurate fractional-order SIR model. Math. Model. Numer. Simul. Appl. 2021, 1, 44–55. [Google Scholar]
- Lotka, A.J. Contribution to the theory of periodic reactions. J. Phys. Chem. 1910, 14, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Volterra, V. Variazioni e fluttuazioni del numero in specie animali conventi. Mem. R. Accad. Naz. Lincei 1926, 2, 31–113. [Google Scholar]
- Rosenzweig, M.L.; MacArthur, R.H. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 1963, 97, 209–223. [Google Scholar] [CrossRef]
- Shah, K.; Abdeljawad, T.; Mahariq, I.; Jarad, F. Qualitative analysis of a mathematical model in the time of COVID-19. BioMed Res. Int. 2020, 5098598. [Google Scholar] [CrossRef]
- Khan, A.; Gómez-Aguilar, J.; Khan, T.S.; Khan, H. Stability analysis and numerical solutions of fractional order HIV/AIDS model. Chaos Solitons Fractals 2019, 122, 119–128. [Google Scholar] [CrossRef]
- Khan, H.; Li, Y.; Khan, A.; Khan, A. Existence of solution for a fractional-order Lotka-Volterra reaction-diffusion model with Mittag-Leffler kernel. Math. Methods Appl. Sci. 2019, 42, 3377–3387. [Google Scholar] [CrossRef]
- Yiha, M.D.; Koya, P.R.; Tibebu, T. Analysis of prey–predator system with prey population experiencing critical depensation growth function. Am. J. Appl. Math. 2015, 3, 327–334. [Google Scholar] [CrossRef]
- Alqudah, M.A.; Abdeljawad, T.; Shah, K.; Jarad, F.; Al-Mdallal, Q. Existence theory and approximate solution to prey-predator coupled system involving nonsingular kernel type derivative. Adv. Differ. Equ. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comp. 2011, 218, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. A new approach to generalized fractional derivatives. arXiv 2011, arXiv:1106.0965. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Krasnoselskiı, M. Two remarks on the method of successive approximations, uspehi mat. Nauk 1955, 10, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramanian, M.; Aljoudi, S. Existence and Ulam–Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order with Nonlocal Generalized Conditions via Generalized Liouville–Caputo Derivative. Fractal Fract. 2022, 6, 629. https://doi.org/10.3390/fractalfract6110629
Subramanian M, Aljoudi S. Existence and Ulam–Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order with Nonlocal Generalized Conditions via Generalized Liouville–Caputo Derivative. Fractal and Fractional. 2022; 6(11):629. https://doi.org/10.3390/fractalfract6110629
Chicago/Turabian StyleSubramanian, Muthaiah, and Shorog Aljoudi. 2022. "Existence and Ulam–Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order with Nonlocal Generalized Conditions via Generalized Liouville–Caputo Derivative" Fractal and Fractional 6, no. 11: 629. https://doi.org/10.3390/fractalfract6110629
APA StyleSubramanian, M., & Aljoudi, S. (2022). Existence and Ulam–Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order with Nonlocal Generalized Conditions via Generalized Liouville–Caputo Derivative. Fractal and Fractional, 6(11), 629. https://doi.org/10.3390/fractalfract6110629