Controlled Parameter Estimation for The AR(1) Model with Stationary Gaussian Noise
Abstract
:1. Introduction
2. Preliminaries and Notations
2.1. Stationary Gaussian Sequences
2.2. Model Transformation
2.3. Fisher Information
3. Main Results
- is strong consistency, that is, as .
- is uniformly consistent on compact , i.e. for any
- is uniformly on compacts asymptotically normal, i.e., as ,
4. Simulation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Theorem 1
Appendix A.2. Proof of Theorem 2
References
- Kiefer, J. On the Efficient Design of Statistical Investigation. Ann. Stat. 1974, 2, 849–879. [Google Scholar]
- Mehra, R. Optimal Input Signal for Linear System Identification. IEEE Trans. Autom. Control 1974, 19, 192–200. [Google Scholar] [CrossRef]
- Mehra, R. Optimal Inputs Signal for Parameter Estimation in Dynamic Systems-Survey and New Results. IEEE Trans. Autom. Contrl 1974, 19, 753–768. [Google Scholar] [CrossRef]
- Ng, T.S.; Qureshi, Z.H.; Cheah, Y.C. Optimal Input Design for An AR Model with Output Constraints. Automatica 1984, 20, 359–363. [Google Scholar] [CrossRef]
- Gevers, M. From the Early Achievement to the Revival of Experiment Design. Eur. J. Control 2005, 11, 1–18. [Google Scholar] [CrossRef]
- Goodwin, G.; Rojas, C.; Welsh, J.; Feuer, A. Robust Optimal Experiment Design for System Indentification. Automatica 2007, 43, 993–1008. [Google Scholar]
- Ljung, L. System Identification-Theory for the User; Prentice Hall: Englewood Cliffs, NJ, USA, 1987. [Google Scholar]
- Ovseevich, A.; Khasminskii, R.; Chow, P. Adaptative Design for Estimation of Unknown Parameters in Linear System. Probl. Inf. Transm. 2000, 36, 125–153. [Google Scholar]
- Leland, W.E.; Taqqu, M.S.; Willinger, W.; Wilson, D.V. On the Self-similar Nature of Ethernet Traffic. IEEE/ACM Trans. Netw. 1994, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Comte, F.; Renault, E. Long Memory in Continuous-time Stochastic Volatility Models. Math. Financ. 1998, 8, 291–323. [Google Scholar] [CrossRef]
- Gatheral, J.; Jaisson, T.; Rosenbaum, M. Volatility is Rough. Quant. Financ. 2018, 18, 933–949. [Google Scholar] [CrossRef]
- Yajima, Y. On Estimation of Long-Memory Time Series Models. Aust. J. Stat. 1985, 27, 302–320. [Google Scholar] [CrossRef]
- Brouste, A.; Cai, C. Controlled Drift Estimation in Fractional Diffusion Process. Stoch. Dyn. 2013, 13, 1250025. [Google Scholar] [CrossRef]
- Brouste, A.; Marina, K.; Popier, A. Design for Estimation of Drift Parameter in Fractional Diffusion System. Stat. Inference Stoch. Process. 2012, 15, 133–149. [Google Scholar] [CrossRef]
- Cao, K.; Gu, J.; Mao, J.; Liu, C. Sampled-Data Stabilization of Fractional Linear System under Arbitrary Sampling Periods. Fractal Fract. 2022, 6, 416. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W.; Liu, Q. A New Adaptive Robust Sliding Mode Control Approach for Nonlinear Singular Fractional Oder System. Fractal Fract. 2022, 6, 253. [Google Scholar] [CrossRef]
- Jia, T.; Chen, X.; He, L.; Zhao, F.; Qiu, J. Finite-Time Synchronization of Uncertain Fractional-Order Delayed Memristive Neural Networks via Adaptive Sliding Mode Control and Its Application. Fractal Fract. 2022, 6, 502. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.; Zhang, X.; Ren, J.; Gui, Q. Robust Control for Variable-Order Fractional Interval System Subject to Actuator Saturation. Fractal Fract. 2022, 6, 159. [Google Scholar] [CrossRef]
- Brouste, A.; Cai, C.; Kleptsyna, M. Asymptotic Properties of the MLE for the Autoregressive Process Coefficients Under Stationary Gaussian Noise. Math. Methods Stat. 2014, 23, 103–115. [Google Scholar] [CrossRef]
- Brouste, A.; Cai, C.; Soltane, M.; Wang, L. Testing for The Change of the Mean-Reverting Parameter of An Autoregressive Model with Stationary Gaussian Noise. Stat. Inference Stoch. Process. 2020, 23, 301–318. [Google Scholar] [CrossRef]
- Brouste, A.; Kleptsyna, M. Kalman Type Filter Under Stationary Noises. Syst. Control Lett. 2012, 61, 1229–1234. [Google Scholar] [CrossRef]
- Robinson, P. Log-periodogram Regression of Time Series with Long-Range Dependence. Ann. Stat. 1995, 23, 1048–1072. [Google Scholar] [CrossRef]
- Istas, J.; Lang, G. Quadratic Variation and Estimation of Local Holder Index of a Gaussian Process. Ann. l’I.H.P. Sect. B 1997, 33, 407–436. [Google Scholar] [CrossRef] [Green Version]
- Ben Hariz, S.; Brouste, A.; Cai, C.; Soltane, M. Fast and Asymptotically-Efficient Estimation in a Fractional Autoregressive Process. 2021. Available online: https://hal.archives-ouvertes.fr/hal-03221391 (accessed on 8 May 2021).
- Liptser, R.S.; Shiryaev, A.N. Statistics of Random Processes II: Applications; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2. [Google Scholar]
- Durbin, J. The Fitting of Time Series Models. Rev. Inst. Int. Stat. 1960, 28, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Sinai, Y.G. Self-Similar Probability Distribution. Theory Probab. Appl. 1976, 21, 64–80. [Google Scholar] [CrossRef]
- Hosking, J. Fractional Differencing. Biometrika 1981, 68, 165–176. [Google Scholar] [CrossRef]
- Chen, Y.; Li, T.; Li, Y. Second Estimator for An AR(1) Model Driven by a Long Momory Gaussian Noise. arXiv, 2020; arXiv:2008.12443. [Google Scholar]
- Wood, A.; Chan, G. Simulation of Stationary Gaussian Processes in [0,1]d. J. Comput. Graph. Stat. 1994, 3, 409–432. [Google Scholar] [CrossRef]
- Kleptsyna, M.L.; Le Breton, A.; Viot, M. New Formulas Concerning Laplace transforms of Quadratic Forms for General Gaussian Sequences. Int. J. Stoch. Anal. 2002, 15, 309–325. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Cai, C.; Zhang, M. Controlled Parameter Estimation for The AR(1) Model with Stationary Gaussian Noise. Fractal Fract. 2022, 6, 643. https://doi.org/10.3390/fractalfract6110643
Sun L, Cai C, Zhang M. Controlled Parameter Estimation for The AR(1) Model with Stationary Gaussian Noise. Fractal and Fractional. 2022; 6(11):643. https://doi.org/10.3390/fractalfract6110643
Chicago/Turabian StyleSun, Lin, Chunhao Cai, and Min Zhang. 2022. "Controlled Parameter Estimation for The AR(1) Model with Stationary Gaussian Noise" Fractal and Fractional 6, no. 11: 643. https://doi.org/10.3390/fractalfract6110643
APA StyleSun, L., Cai, C., & Zhang, M. (2022). Controlled Parameter Estimation for The AR(1) Model with Stationary Gaussian Noise. Fractal and Fractional, 6(11), 643. https://doi.org/10.3390/fractalfract6110643