Fractal Perturbation of the Nadaraya–Watson Estimator
Abstract
1. Introduction
2. Construction of Fractal Interpolation Functions
3. The Nadaraya–Watson Estimator
4. Fractal Perturbation of the Nadaraya–Watson Estimator
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Györfi, L.; Kohler, M.; Krzyzak, A.; Walk, H. A Distribution-Free Theory of Nonparametric Regression; Springer: New York, NY, USA, 2002. [Google Scholar]
- Härdle, W.; Müller, M.; Sperlich, S.; Werwatz, A. Nonparametric and Semiparametric Models; Springer: New York, NY, USA, 2004. [Google Scholar]
- Hart, J.D. Nonparametric Smoothing and Lack-of-Fit Tests; Springer: New York, NY, USA, 1997. [Google Scholar]
- Li, Q.; Racine, J.S. Nonparametric Econometrics; Princeton University Press: Mercer County, NJ, USA, 2007. [Google Scholar]
- Tsybakov, A.B. Introduction to Nonparametric Estimation; Springer: New York, NY, USA, 2009. [Google Scholar]
- Wasserman, L. All of Nonparametric Statistics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Chu, C.-K.; Marron, J.S. Choosing a kernel regression estimator. Stat. Sci. 1991, 6, 404–436. [Google Scholar] [CrossRef]
- Jones, M.C.; Davies, S.J.; Park, B.U. Versions of kernel-type regression estimators. J. Amer. Statist. Assoc. 1994, 89, 825–832. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractal functions and interpolation. Constr. Approx. 1986, 2, 303–329. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractals Everywhere; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
- Marvasti, M.A.; Strahle, W.C. Fractal geometry analysis of turbulent data. Signal Process. 1995, 41, 191–201. [Google Scholar] [CrossRef]
- Mazel, D.S. Representation of discrete sequences with three-dimensional iterated function systems. IEEE Trans. Signal Process. 1994, 42, 3269–3271. [Google Scholar] [CrossRef]
- Mazel, D.S.; Hayes, M.H. Using iterated function systems to model discrete sequences. IEEE Trans. Signal Process. 1992, 40, 1724–1734. [Google Scholar] [CrossRef]
- Balasubramani, N. Shape preserving rational cubic fractal interpolation function. J. Comput. Appl. Math. 2017, 319, 277–295. [Google Scholar] [CrossRef]
- Balasubramani, N.; Guru Prem Prasad, M.; Natesan, S. Shape preserving α-fractal rational cubic splines. Calcolo 2020, 57, 21. [Google Scholar] [CrossRef]
- Barnsley, M.F.; Elton, J.; Hardin, D.; Massopust, P. Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 1989, 20, 1218–1242. [Google Scholar] [CrossRef]
- Barnsley, M.F.; Massopust, P.R. Bilinear fractal interpolation and box dimension. J. Approx. Theory 2015, 192, 362–378. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Kapoor, G.P. Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 2006, 44, 655–676. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Navascués, M.A. Natural bicubic spline fractal interpolation. Nonlinear Anal. 2008, 69, 3679–3691. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Navascués, M.A. Generalized Hermite fractal interpolation. Rev. Real Acad. Cienc. Zaragoza 2009, 64, 107–120. [Google Scholar]
- Chand, A.K.B.; Tyada, K.R. Constrained shape preserving rational cubic fractal interpolation functions. Rocky Mt. J. Math. 2018, 48, 75–105. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Vijender, N.; Viswanathan, P.; Tetenov, A.V. Affine zipper fractal interpolation functions. BIT Numer. Math. 2020, 60, 319–344. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Viswanathan, P. A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 2013, 53, 841–865. [Google Scholar] [CrossRef]
- Chandra, S.; Abbas, S.; Verma, S. Bernstein super fractal interpolation function for countable data systems. Numer. Algorithms 2022. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, H.-Y. Construction of a class of weighted bivariate fractal interpolation functions. Fractals 2022, 30, 2250034. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Chand, A.K.B. Shape preserving rational quartic fractal functions. Fractals 2019, 27, 1950141. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Chand, A.K.B.; Kumar, G.S. A new class of rational cubic spline fractal interpolation function and its constrained aspects. Appl. Math. Comput. 2019, 346, 319–335. [Google Scholar] [CrossRef]
- Luor, D.-C. Fractal interpolation functions with partial self similarity. J. Math. Anal. Appl. 2018, 464, 911–923. [Google Scholar] [CrossRef]
- Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Massopust, P.R. Interpolation and Approximation with Splines and Fractals; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Miculescu, R.; Mihail, A.; Pacurar, C.M. A fractal interpolation scheme for a possible sizeable set of data. J. Fractal Geom. 2022. [Google Scholar] [CrossRef]
- Navascués, M.A. Fractal approximation. Complex Anal. Oper. Theory 2010, 4, 953–974. [Google Scholar] [CrossRef]
- Navascués, M.A. Fractal bases of Lp spaces. Fractals 2012, 20, 141–148. [Google Scholar] [CrossRef]
- Navascués, M.A.; Chand, A.K.B. Fundamental sets of fractal functions. Acta Appl. Math. 2008, 100, 247–261. [Google Scholar] [CrossRef]
- Navascués, M.A.; Pacurar, C.; Drakopoulos, V. Scale-free fractal interpolation. Fractal Fract. 2022, 6, 602. [Google Scholar] [CrossRef]
- Prasad, S.A. Super coalescence hidden-variable fractal interpolation functions. Fractals 2021, 29, 2150051. [Google Scholar] [CrossRef]
- Ri, S.; Drakopoulos, V. Generalized fractal interpolation curved lines and surfaces. Nonlinear Stud. 2021, 28, 427–488. [Google Scholar]
- Tyada, K.R.; Chand, A.K.B.; Sajid, M. Shape preserving rational cubic trigonometric fractal interpolation functions. Math. Comput. Simul. 2021, 190, 866–891. [Google Scholar] [CrossRef]
- Vijender, N. Fractal perturbation of shaped functions: Convergence independent of scaling. Mediterr. J. Math. 2018, 15, 211. [Google Scholar] [CrossRef]
- Viswanathan, P. A revisit to smoothness preserving fractal perturbation of a bivariate function: Self-Referential counterpart to bicubic splines. Chaos Solitons Fractals 2022, 157, 111885. [Google Scholar] [CrossRef]
- Viswanathan, P.; Chand, A.K.B. Fractal rational functions and their approximation properties. J. Approx. Theory 2014, 185, 31–50. [Google Scholar] [CrossRef]
- Viswanathan, P.; Chand, A.K.B. α-fractal rational splines for constrained interpolation. Electron. Trans. Numer. Anal. 2014, 41, 420–442. [Google Scholar]
- Viswanathan, P.; Navascués, M.A.; Chand, A.K.B. Associate fractal functions in Lp-spaces and in one-sided uniform approximation. J. Math. Anal. Appl. 2016, 433, 862–876. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Yu, J.-S. Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 2013, 175, 1–18. [Google Scholar] [CrossRef]
- Banerjee, S.; Gowrisankar, A. Frontiers of Fractal Analysis Recent Advances and Challenges; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Kumar, M.; Upadhye, N.S.; Chand, A.K.B. Linear fractal interpolation function for data set with random noise. Fractals, 2022; accepted. [Google Scholar] [CrossRef]
- Luor, D.-C. Fractal interpolation functions for random data sets. Chaos Solitons Fractals 2018, 114, 256–263. [Google Scholar] [CrossRef]
- Luor, D.-C. Statistical properties of linear fractal interpolation functions for random data sets. Fractals 2018, 26, 1850009. [Google Scholar] [CrossRef]
- Luor, D.-C. Autocovariance and increments of deviation of fractal interpolation functions for random datasets. Fractals 2018, 26, 1850075. [Google Scholar] [CrossRef]
- Luor, D.-C. On the distributions of fractal functions that interpolate data points with Gaussian noise. Chaos Solitons Fractals 2020, 135, 109743. [Google Scholar] [CrossRef]
- Caldarola, F.; Maiolo, M. On the topological convergence of multi-rule sequences of sets and fractal patterns. Soft Comput. 2020, 24, 17737–17749. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Li, H.; Shen, J.-Y. A novel hybrid fractal interpolation-SVM model for forecasting stock price indexes. Fractals 2019, 27, 1950055. [Google Scholar] [CrossRef]
- Tosatto, S.; Akrour, R.; Peters, J. An upper bound of the bias of Nadaraya-Watson kernel regression under Lipschitz assumptions. Stats 2021, 4, 1–17. [Google Scholar] [CrossRef]
k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
0.02 | −0.03 | 0.08 | −0.16 | 0.05 | −0.26 | −0.36 | −0.06 | −0.14 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luor, D.-C.; Liu, C.-W. Fractal Perturbation of the Nadaraya–Watson Estimator. Fractal Fract. 2022, 6, 680. https://doi.org/10.3390/fractalfract6110680
Luor D-C, Liu C-W. Fractal Perturbation of the Nadaraya–Watson Estimator. Fractal and Fractional. 2022; 6(11):680. https://doi.org/10.3390/fractalfract6110680
Chicago/Turabian StyleLuor, Dah-Chin, and Chiao-Wen Liu. 2022. "Fractal Perturbation of the Nadaraya–Watson Estimator" Fractal and Fractional 6, no. 11: 680. https://doi.org/10.3390/fractalfract6110680
APA StyleLuor, D.-C., & Liu, C.-W. (2022). Fractal Perturbation of the Nadaraya–Watson Estimator. Fractal and Fractional, 6(11), 680. https://doi.org/10.3390/fractalfract6110680