Analytical Solution of Coupled Hirota–Satsuma and KdV Equations
Abstract
:1. Introduction
2. Basic Preliminaries
2.1. Fractional Power Series
2.2. Convergence Analysis of LRPSM
3. LRPSM Methodology
- and , for all .
- implies that
4. Numerical Application
5. Conclusions
- LRPSM is a powerful method for solving systems of fractional partial differential equations.
- LRPSM is a simple technique that could provide many terms of the obtained series solution.
- In comparison to other numerical methods, LRPSM needs less computation, without requiring linearization, discretization, or differentiation.
- The only disadvantage of the presented method is the Laplace transform step in the event that one the functions in the discussed problem is not of exponential order.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
- Petráš, I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Al-khateeb, A.; Zureigat, H.; Ala’yed, O.; Bawaneh, S. Ulam–Hyers Stability and Uniqueness for Nonlinear Sequential Fractional Differential Equations Involving Integral Boundary Conditions. Fractal Fract. 2021, 5, 235. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Choo, K.Y.; Muniandy, S.V.; Woon, K.L.; Gan, M.T.; Ong, D.S. Modeling anomalous charge carrier transport in disordered organic semiconductors using the fractional drift-diffusion equation. Org. Electron. 2017, 41, 157–165. [Google Scholar] [CrossRef]
- Abbas, M.; Rizvi, A.A.; Naqvi, Q.A. Fractional dual fields to the Maxwell equations for a line source buried in dielectric half space. Optik 2017, 129, 225–230. [Google Scholar] [CrossRef]
- Formato, A.; Ianniello, D.; Villecco, F.; Lenza, T.L.; Guida, D. Design optimization of the plough working surface by computerized mathematical model. Emir. J. Food Agric. 2017, 1, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Tariq, H.; Akram, G. New approach for exact solutions of time fractional Cahn-Allen equation and time fractional Phi-4 equation. Phys. A Stat. Mech. Appl. 2017, 473, 352–362. [Google Scholar] [CrossRef]
- Pellegrino, A.; Villecco, F. Design optimization of a natural gas substation with intensification of the energy cycle. Math. Probl. Eng. 2010, 2010, 294102. [Google Scholar] [CrossRef]
- Wang, L.; Sun, D.A.; Li, P.; Xie, Y. Semi-analytical solution for one-dimensional consolidation of fractional derivative viscoelastic saturated soils. Comput. Geotech. 2017, 83, 30–39. [Google Scholar] [CrossRef]
- Oskouie, M.F.; Ansari, R. Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects. Appl. Math. Model. 2017, 43, 337–350. [Google Scholar] [CrossRef]
- Mohyud-Din, S.T.; Noor, M.A.; Noor, K.I.; Hosseini, M.M. Variational iteration method for re-formulated partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11, 87–92. [Google Scholar] [CrossRef]
- Odibat, Z.M.; Kumar, S.; Shawagfeh, N.; Alsaedi, A.; Hayat, T. A study on the convergence conditions of generalized differential transform method. Math. Methods Appl. Sci. 2017, 40, 40–48. [Google Scholar] [CrossRef]
- Unal, E.; Gokdogan, A. Solution of conformable fractional ordinary differential equations via differential transform method. Optik 2017, 128, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Singh, T.; Kilicman, A. Combination of integral and projected differential transform methods for time-fractional gas dynamics equations. Ain. Shams. Eng. J. 2017, 9, 1683–1688. [Google Scholar] [CrossRef]
- Goswami, P.; Alqahtani, R.T. On the solution of local fractional differential equations using local fractional Laplace variational iteration method. Math. Probl. Eng. 2016, 2016, 9672314. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Jassim, H.K. Numerical solutions of telegraph and laplace equations on cantor sets using local fractional Laplace decomposition method. Int. J. Adv. Appl. Math. Mech. 2015, 2, 144–151. [Google Scholar]
- Ma, H.C.; Yao, D.D.; Peng, X.F. Exact solutions of non-linear fractional partial differential equations by fractional sub-equation method. Therm. Sci. 2015, 19, 1239–1244. [Google Scholar] [CrossRef]
- Feng, D.; Li, K. Exact traveling wave solutions for a generalized Hirota-Satsuma coupled KdV equation by Fan sub-equation method. Phys. Lett. A 2011, 375, 2201–2210. [Google Scholar] [CrossRef]
- Javeed, S.; Baleanu, D.; Waheed, A.; Shaukat Khan, M.; Affan, H. Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations. Mathematics 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Mohyud-Din, S.T.; Noor, M.A.; Noor, K.I. Some relatively new techniques for nonlinear problems. Math. Probl. Eng. 2009, 2009, 234849. [Google Scholar] [CrossRef] [Green Version]
- Bekir, A.; Kaplan, M. Exponential rational function method for solving nonlinear equations arising in various physical models. Chin. J. Phys. 2016, 54, 365–370. [Google Scholar] [CrossRef]
- Noor, M.A.; Mohyud-Din, S.T.; Waheed, A.; Al-Said, E.A. Exp-function method for traveling wave solutions of nonlinear evolution equations. Appl. Math. Comput. 2010, 216, 477–483. [Google Scholar] [CrossRef]
- Pandir, Y.; Gurefe, Y.; Misirli, E. The extended trial equation method for some time fractional differential equations. Discrete Dyn. Nat. Soc. 2013, 2013, 491359. [Google Scholar] [CrossRef]
- Burqan, A.; Saadeh, R.; Qazza, A.; Momani, S. ARA-Residual Power Series Method for Solving Partial Fractional Differential Equations. Alex. Eng. J. 2023, 62, 47–62. [Google Scholar]
- Qazza, A.; Burqan, A.; Saadeh, R.; Khalil, R. Applications on Double ARA–Sumudu Transform in Solving Fractional Partial Differential Equations. Symmetry 2022, 14, 1817. [Google Scholar] [CrossRef]
- Saadeh, R. Numerical algorithm to solve a coupled system of fractional order using a novel reproducing kernel method. Alex. Eng. J. 2021, 60, 4583–4591. [Google Scholar] [CrossRef]
- Berz, M. The method of power series tracking for the mathematical description of beam dynamics. Nucl. Instrum. Methods Phys. Res. A 1987, 258, 431–436. [Google Scholar] [CrossRef]
- El-Ajou, A. Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 2021, 136, 229. [Google Scholar] [CrossRef]
- Eriqat, T.; El-Ajou, A.; Oqielat, M.N.; Al-Zhour, Z.; Momani, S. A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos Solitons Fractals 2020, 138, 109957. [Google Scholar] [CrossRef]
- Kazem, S. Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 2013, 16, 3–11. [Google Scholar]
- Saadeh, R.; Burqan, A.; El-Ajou, A. Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function. Alex. Eng. J. 2022, 61, 10551–10562. [Google Scholar] [CrossRef]
- Saadeh, R.; Qazza, A.; Amawi, K. A New Approach Using Integral Transform to Solve Cancer Models. Fractal Fract. 2022, 6, 490. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Shah, R.; Iqbal, N.; Aly, S.; Nonlaopon, K. Fractional Series Solution Construction for Nonlinear Fractional Reaction-Diffusion Brusselator Model Utilizing Laplace Residual Power Series. Symmetry 2022, 14, 1944. [Google Scholar] [CrossRef]
- Ali, A.T.; Khater, M.M.; Attia, R.A.; Abdel-Aty, A.H.; Lu, D. Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system. Chaos Solitons Fractals 2020, 131, 109473. [Google Scholar] [CrossRef]
- Diethelm, K. A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 2013, 71, 613–619. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Novel simulations to the time-fractional Fisher’s equation. Math. Sci. 2019, 13, 33. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadeh, R.; Ala’yed, O.; Qazza, A. Analytical Solution of Coupled Hirota–Satsuma and KdV Equations. Fractal Fract. 2022, 6, 694. https://doi.org/10.3390/fractalfract6120694
Saadeh R, Ala’yed O, Qazza A. Analytical Solution of Coupled Hirota–Satsuma and KdV Equations. Fractal and Fractional. 2022; 6(12):694. https://doi.org/10.3390/fractalfract6120694
Chicago/Turabian StyleSaadeh, Rania, Osama Ala’yed, and Ahmad Qazza. 2022. "Analytical Solution of Coupled Hirota–Satsuma and KdV Equations" Fractal and Fractional 6, no. 12: 694. https://doi.org/10.3390/fractalfract6120694
APA StyleSaadeh, R., Ala’yed, O., & Qazza, A. (2022). Analytical Solution of Coupled Hirota–Satsuma and KdV Equations. Fractal and Fractional, 6(12), 694. https://doi.org/10.3390/fractalfract6120694