Some Generalized Fractional Integral Inequalities for Convex Functions with Applications
Abstract
:1. Introduction
2. Fractional Integrals and Related Inequalities
3. Key Equalities
- (i)
- If we set , then we obtain the following equality:This equality helps us to obtain some trapezoidal type inequalities.
- (ii)
- If we set , then we obtain the following equality:This equality help us to obtain some midpoint type inequalities.
- (iii)
- If we set , then we obtain the following equality:This equality helps us to obtain some Simpson’s type inequalities.
- (i)
- If we set then we obtain the following RLFIs equality:
- (ii)
- If we set , then we have the following KFIs equality:
4. Main Results
- (i)
- If we set , then we obtain the following trapezoidal type inequality:
- (ii)
- If we set , then we obtain the following midpoint type inequality:
- (iii)
- If we set , then we obtain the following Simpson’s type inequality:
- (i)
- If we set then we obtain the following RLFIs inequality:
- (ii)
- If we set , then we have the following KFIs inequality:
- (i)
- If we set , then we obtain the following trapezoidal type inequality:
- (ii)
- If we set , then we obtain the following midpoint type inequality:
- (iii)
- If we set , then we obtain the following Simpson’s type inequality:
- (i)
- If we set then we obtain the following RLFIs inequality:
- (ii)
- If we set , then we have the following KFIs inequality:
- (i)
- If we set , then we obtain the following trapezoidal type inequality:
- (ii)
- If we set , then we obtain the following midpoint type inequality:
- (iii)
- If we set , then we obtain the following Simpson’s type inequality:
- (i)
- If we set then we obtain the following RLFIs inequality:
- (ii)
- If we set , then we have the following KFIs inequality:
5. Applications to Quadrature Formulas
- (i)
- If we set , then we obtain the following trapezoidal type inequality:
- (ii)
- If we set , then we obtain the following midpoint type inequality:
- (iii)
- If we , then we obtain the following Simpson’s type inequality:
- (i)
- If we set , then we obtain the following trapezoidal type inequality:
- (ii)
- If we set , then we obtain the following midpoint type inequality:
- (iii)
- If we , then we obtain the following Simpson’s type inequality:
- (i)
- If we set , then we obtain the following trapezoidal type inequality:
- (ii)
- If we set , then we obtain the following midpoint type inequality:
- (iii)
- If we , then we obtain the following Simpson’s type inequality:
- (i)
- If we set , then we obtain the following trapezoidal type inequality:
- (ii)
- If we set , then we obtain the following midpoint type inequality:
- (iii)
- If we , then we obtain the following Simpson’s type inequality:
- (i)
- If we set , then we obtain the following trapezoidal type inequality:
- (ii)
- If we set , then we obtain the following midpoint type inequality:
- (iii)
- If we , then we obtain the following Simpson’s type inequality:
- (i)
- If we set , then we obtain the following trapezoidal type inequality:
- (ii)
- If we set , then we obtain the following midpoint type inequality:
- (iii)
- If we , then we obtain the following Simpson’s type inequality:
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and relatedfractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- İşcan, İ.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Yildrim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Peng, C.; Zhou, C.; Du, T.S. Riemann-Liouville fractional Simpson’s inequalities through generalized (m, h1, h2)-preinvexity. Ital. J. Pure Appl. Math. 2017, 38, 345–367. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Agarwal, P.; Jleli, M.; Tamor, M. Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 2017, 55. [Google Scholar] [CrossRef] [Green Version]
- Farid, G.; Usman, M. Ostrowski type k-fractional integral inequalities for MT-convex and h-convex functions. Nonlinear Funct. Anal. Appl. 2017, 22, 627–639. [Google Scholar]
- Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J.; Kashuri, A. Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals. J. Inequal. Appl. 2018, 2018, 49. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Ertugral, F. On the generalized Hermite-Hadamard inequalities. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
- Zhao, D.F.; Ali, M.A.; Kashuri, A.; Budak, H. Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions. Adv. Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Budak, H.; Hezenci, F.; Kara, H. On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral. Math. Methods Appl. Sci. 2021, 44, 12522–12536. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New general variants of Chebyshev type inequalities via generalized fractional integral operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Chu, Y.M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite–Hadamard-type inequalities involving-Riemann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential s-convex functions. Turk. J. Sci. 2020, 5, 140–146. [Google Scholar]
- Ekincia, A.; Özdemir, M.E.; Set, E. New Integral Inequalities of Ostrowski Type for Quasi-Convex Functions with Applications. Turk. J. Sci. 2020, 5, 290–304. [Google Scholar]
- Ekincia, A.; Özdemir, M.E. Some New Integral Inequalities Via Riemann-Liouville Integral Operators. Appl. Comput. Math. 2019, 3, 288–295. [Google Scholar]
- Kashuri, A.; Liko, R. Generalized trapezoidal type integral inequalities and their applications. J. Anal. 2020, 28, 1023–1043. [Google Scholar] [CrossRef]
- Khan, M.A.; Iqbal, A.; Suleman, M.; Chu, Y.M. Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, 2018, 161. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Ali, T.; Dragomir, S.S.; Sarikaya, M.Z. Hermite–Hadamard type inequalities for conformable fractional integrals. Rev. Real Acad. Cienc. Exactas Fís. Nat. A Mat. 2018, 112, 1033–1048. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Gözpinar, A. Hermite-Hadamard type inequalities for the generalized k-fractional integral operators. J. Inequal. Appl. 2017, 2017, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunc, M. On new inequalities for h-convex functions via Riemann-Liouville fractional integration. Filomat 2013, 27, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Budak, H. Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Math. 2021, 6, 9397–9421. [Google Scholar] [CrossRef]
- Zhao, D.F.; Ali, M.A.; Kashuri, A.; Budak, H.; Sarikaya, M.Z. Hermite–Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals. J. Inequal. Appl. 2020, 2020, 222. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Pećarixcx, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Farid, G.; Rehman, A.U.; Zahra, M. On Hadamard inequalities for k-fractional integrals. Nonlinear Funct. Appl. 2016, 21, 463–478. [Google Scholar]
- Xi, B.Y.; Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct. Spaces 2012, 2012, 980438. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Ali, M.A.; Promsakon, C.; Sitthiwirattham, T. Some Generalized Fractional Integral Inequalities for Convex Functions with Applications. Fractal Fract. 2022, 6, 94. https://doi.org/10.3390/fractalfract6020094
Zhao D, Ali MA, Promsakon C, Sitthiwirattham T. Some Generalized Fractional Integral Inequalities for Convex Functions with Applications. Fractal and Fractional. 2022; 6(2):94. https://doi.org/10.3390/fractalfract6020094
Chicago/Turabian StyleZhao, Dafang, Muhammad Aamir Ali, Chanon Promsakon, and Thanin Sitthiwirattham. 2022. "Some Generalized Fractional Integral Inequalities for Convex Functions with Applications" Fractal and Fractional 6, no. 2: 94. https://doi.org/10.3390/fractalfract6020094
APA StyleZhao, D., Ali, M. A., Promsakon, C., & Sitthiwirattham, T. (2022). Some Generalized Fractional Integral Inequalities for Convex Functions with Applications. Fractal and Fractional, 6(2), 94. https://doi.org/10.3390/fractalfract6020094