Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications
Abstract
:1. Introduction
- (i)
- Estimation of the functional value’s deviation from its average value.
- (ii)
- A rectangle is used to approximate the area under the curve.
2. Preliminaries of -Calculus and Some Inequalities
- (i)
- The product is q-differentiable on with
- (ii)
- If , then is q-differentiable on with
- (i)
- ;
- (ii)
- for .
3. Identities
- (i)
- If we set and , then we obtain the following equality:
- (ii)
- If we set and , then we obtain the following equality:
4. Main Results
- (i)
- If we assume that , then we obtain the following new inequality:
- (ii)
- If we set and , then we obtain the following quantum midpoint type inequality:
- (iii)
- If we set and , then we obtain the following quantum trapezoidal type inequality:
- (iv)
- If we set and , then we obtain the following quantum Simpson’s type inequality:
- (i)
- If we assume that , then we obtain the following new inequality:
- (ii)
- If we set and , then we obtain the following quantum midpoint type inequality:
- (iii)
- If we set and , then we obtain the following quantum trapezoidal type inequality:
- (iv)
- If we set and , then we obtain the following quantum Simpson’s type inequality:
- (i)
- If we assume that , then we obtain the following new inequality:
- (ii)
- If we set and , then we obtain the following quantum midpoint type inequality:
- (iii)
- If we set and , then we obtain the following quantum trapezoidal type inequality:
- (iv)
- If we set and , then we obtain the following quantum Simpson’s type inequality:
5. Examples
6. Applications to Special Means of Real Numbers
- (i)
- The Arithmetic mean:
- (ii)
- The Harmonic mean:
- (iii)
- The Geometric mean:
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrowski, A. Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert. Comment. Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Alp, N.; Chu, Y.-M. Quantum Ostrowski type integral inequalities. J. Math. Inequal. 2021, in press. [Google Scholar]
- Karabayir, İ.; Tunç, M.; Yüksel, E. On some inequalities for functions whose absolute values of the second derivatives are α-, m-, (α, m)-logarithmically convex. Georgian Math. J. 2015, 22, 251–257. [Google Scholar] [CrossRef]
- Kizil, Ş.; Ardiç, M.A. Inequalities for strongly convex functions via Atangana-Baleanu Integral Operators. Turk. Sci. 2021, 6, 96–109. [Google Scholar]
- Özdemir, M.E. New Refinements of Hadamard Integral inequlaity via kFractional Integrals for p-Convex Function. Turk. J. Sci. 2019, 6, 1–5. [Google Scholar]
- Rashid, S.; Butt, S.I.; Kanwal, S.; Ahmadand, H.; Wang, M.K. Quantum integral inequalities with respect to Raina’s function via coordinated generalized convex functions with applications. J. Funct. Spaces 2021, 2021, 6631474. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Budak, H. Some trapezoid and midpoint type inequalities for newly defined quantum integrals. Proyecciones 2021, 40, 199–215. [Google Scholar] [CrossRef]
- Liu, W.; Hefeng, Z. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2016, 7, 501–522. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernádez, J.E. Quantum trapezium-type inequalities using generalized ϕ-convex functions. Axioms 2020, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.P.; Zhu, T.; Du, T.S. Some inequalities using s-preinvexity via quantum calculus. J. Interdiscip. 2021, 24, 613–636. [Google Scholar] [CrossRef]
- Brahim, K.; Taf, S.; Rihahi, L. Some result for Hadamard-type inequalities in quantum calculus. Le Mat. 2014, 69, 243–258. [Google Scholar]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- Neang, P.; Nanlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Agarwal, P. Some trapezoid and midpoint type inequalities via fractional (p, q)-calculus. Adv. Differ. Equ. 2021, 2021, 333. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z. Hermite Hadamard’s type inequalities for co-ordinated convex functions on quantum integral. Appl. Math. E-Notes 2020, 20, 341–356. [Google Scholar]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Kunt, M.; Latif, M.A.; Iscan, I.; Dragomir, S.S. Quantum Hermite-Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 207–223. [Google Scholar]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildrim, H. Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus. Math. Meth. Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Kalsoom, H.; Wu, J.-D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Sial, I.B.; Zhang, Z. Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry 2020, 12, 1476. [Google Scholar] [CrossRef]
- Kunt, M.; Kashuri, A.; Du, T.; Baidar, A.W. Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Math. 2020, 5, 5439–5457. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernádez, J.E. Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions. Symmetry 2019, 11, 1513. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.W. q-Bernoulli inequality. Turk. J. Sci. 2018, 3, 32–39. [Google Scholar]
- Cerone, P.; Dragomir, S.S. Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstr. Math. 2004, 37, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Kavurmaci, H.; Avci, M.; Özdemir, M.E. New Inequalities of Hermite-Hadamard type for convex functions with applications. J. Inequal. Appl. 2011, 2011, 86. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Ali, M.A.; Budak, H.; Nanlaopon, K.; Abdullah, Z. Simpson’s and Newton’s Inequalities for (α, m)-Convex Functions via Quantum Calculus. 2021; Submitted. [Google Scholar]
- Sial, I.B.; Mei, S.; Ali, M.A.; Nanlaopon, K. On some generalized Simpson’s and Newton’s inequalities for (α, m)-convex functions in q-calculus. Mathematics 2021, 2021, 3266. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Ali, M.A.; Luangboon, W.; Budak, H.; Nonlaopon, K. Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications. Fractal Fract. 2022, 6, 129. https://doi.org/10.3390/fractalfract6030129
Zhao D, Ali MA, Luangboon W, Budak H, Nonlaopon K. Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications. Fractal and Fractional. 2022; 6(3):129. https://doi.org/10.3390/fractalfract6030129
Chicago/Turabian StyleZhao, Dafang, Muhammad Aamir Ali, Waewta Luangboon, Hüseyin Budak, and Kamsing Nonlaopon. 2022. "Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications" Fractal and Fractional 6, no. 3: 129. https://doi.org/10.3390/fractalfract6030129
APA StyleZhao, D., Ali, M. A., Luangboon, W., Budak, H., & Nonlaopon, K. (2022). Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications. Fractal and Fractional, 6(3), 129. https://doi.org/10.3390/fractalfract6030129