The Traveling Wave Solutions in a Mixed-Diffusion Epidemic Model
Abstract
:1. Introduction
- (i)
- When , (4) is a classical reaction-diffusion equation and there is a unique traveling wave front for any speed , but no traveling wave solution for the speed .
- (ii)
- When , (4) is a fractional diffusion equation with reaction, and there is no traveling wave solution for any speed . Moreover, it was shown that the front position propagates exponentially; see, e.g., [24,25,26]. To the best of our knowledge, there is no result about the propagation dynamics of variable-order fractional diffusion equations, and our work could possibly provide some basis for this topic.
2. Two Definitions of Minimum Wave Speeds
- (A1)
- and are two functions in with and , and , , for ;
- (A2)
- , for ; , for .
- (K)
- , for , and there exist and such that and .
2.1. The First Definition
- (i)
- satisfies that
- (ii)
- There are two unique constants and such that
- (iii)
- If we setthen holds.
2.2. The Second Definition
2.3. Equivalence of Two Definitions
3. Traveling Wave Solutions
- (a)
- for any ,
- (b)
- (9) has no constant solution on ,
- (c)
- for ,
- (d)
- for ,
4. The Signs of Minimum Wave Speeds
- (i)
- ;
- (ii)
- is a singleton set;
- (iii)
- ;
- (iv)
- is a singleton set;
- (v)
- .
4.1. Normal Distribution
- (i)
- the propagation to left fails, namely, ;
- (ii)
- ;
- (iii)
- the propagation to both left and right happens, namely, ;
- (iv)
- ;
- (v)
- the propagation to right fails, namely, .
4.2. Uniform Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badshah, N.; Akbar, A. Stability analysis of fractional order SEIR model for malaria disease in Khyber Pakhtunkhwa. Demonstr. Math. 2021, 54, 326–334. [Google Scholar] [CrossRef]
- Cherraf, A.; Li, M.; Moulai-Khatir, A. Interaction tumor-immune model with time-delay and immuno-chemotherapy protocol. In Rendiconti del Circolo Matematico di Palermo Series 2; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Hoang, M.T. Dynamical analysis of two fractional-order SIQRA malware propagation models and their discretizations. In Rendiconti del Circolo Matematico di Palermo Series 2; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Capasso, V.; Maddalena, L. Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Biol. 1981, 13, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Capasso, V.; Maddalena, L. A nonlinear diffusion system modelling the spread of oro-faecal diseases. In Nonlinear Phenomena in Mathematical Sciences; Academic Press: New York, NY, USA, 1982; pp. 207–217. [Google Scholar]
- Fife, P. Some nonclassical trends in parabolic and parabolic-like evolutions. In Trends in Nonlinear Analysis; Springer: Berlin/Heidelberg, Germany, 2003; pp. 153–191. [Google Scholar]
- Hsu, C.-H.; Yang, T.-S. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity 2013, 26, 121–139. [Google Scholar] [CrossRef]
- Wu, S.-L.; Hsu, C.-H. Existence of entire solutions for delayed monostable epidemic models. Trans. Am. Math. Soc. 2016, 368, 6033–6062. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, X.-Q. Bistable waves in an epidemic model. J. Dynam. Differ. Equ. 2004, 16, 679–707. [Google Scholar] [CrossRef]
- Zhao, X.-Q.; Wang, W. Fisher waves in an epidemic model. Discret. Contin. Dyn. Syst. B 2004, 4, 1117–1128. [Google Scholar] [CrossRef]
- Volpert, A.I.; Volpert, V.A.; Volpert, V.A. Traveling Wave Solutions of Parabolic Systems. In Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1994. [Google Scholar]
- Weinberger, H.F. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 2002, 45, 511–548. [Google Scholar] [CrossRef]
- Li, W.-T.; Xu, W.-B.; Zhang, L. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discret. Contin. Dyn. Syst. 2017, 37, 2483–2512. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, Z.; Hsu, C.-H. Entire solutions for a delayed nonlocal dispersal system with monostable nonlinearities. Nonlinearity 2019, 32, 1206–1236. [Google Scholar] [CrossRef]
- Wang, J.-B.; Li, W.-T.; Sun, J.-W. Global dynamics and spreading speeds for a partially degenerate system with non-local dispersal in periodic habitats. Proc. R. Soc. Edinb. Sect. A Math. 2018, 148, 849–880. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.-T.; Wu, S.-L. Multi-type entire solutions in a nonlocal dispersal epidemic model. J. Dyn. Differ. Equ. 2016, 28, 189–224. [Google Scholar] [CrossRef]
- Bao, X.; Li, W.-T.; Shen, W.; Wang, Z.-C. Spreading speeds and linear determinacy of time dependent diffusive cooperative/competitive systems. J. Differ. Equ. 2018, 265, 3048–3091. [Google Scholar] [CrossRef]
- Hu, C.; Kuang, Y.; Li, B.; Liu, H. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discret. Contin. Dyn. Syst. B 2015, 20, 1663–1684. [Google Scholar] [CrossRef]
- Xu, W.-B.; Li, W.-T.; Ruan, S. Spatial propagation in an epidemic model with nonlocal diffusion: The influences of initial data and dispersals. Sci. China Math. 2020, 63, 2177–2206. [Google Scholar] [CrossRef]
- Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.M.; Ainsworth, M.; et al. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 2020, 404, 109009. [Google Scholar] [CrossRef]
- Pang, H.-K.; Sun, H.-W. A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation. J. Sci. Comput. 2021, 87, 15. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical method for the variable-order fractional advection diffusion equation with a nonlinear source term. SIAM J. Mumer. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Wang, H. An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation. SIAM J. Numer. Anal. 2020, 58, 2492–2514. [Google Scholar] [CrossRef]
- Cabré, X.; Roquejoffre, J.M. The influence of fractional diffusion in Fisher-KPP equations. Commun. Math. Phys. 2013, 320, 679–722. [Google Scholar] [CrossRef] [Green Version]
- Coulon, A.C.; Yangari, M. Exponential propagation for fractional reaction-diffusion cooperative systems with fast decaying initial conditions. J. Dyn. Differ. Equ. 2017, 29, 799–815. [Google Scholar] [CrossRef]
- Felmer, P.; Yangari, M. Fast propagation for fractional KPP equations with slowly decaying initial conditions. SIAM J. Math. Anal. 2013, 45, 662–678. [Google Scholar] [CrossRef] [Green Version]
- Yagisita, H. Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci. 2009, 45, 925–953. [Google Scholar] [CrossRef] [Green Version]
- Bates, P.W.; Fife, P.C.; Ren, X.; Wang, X. Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 1997, 138, 105–136. [Google Scholar] [CrossRef]
- Carr, J.; Chmaj, A. Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 2004, 132, 2433–2439. [Google Scholar] [CrossRef] [Green Version]
- Chen, X. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 1997, 2, 125–160. [Google Scholar]
- Chen, X.; Guo, J.-S. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 2003, 326, 123–146. [Google Scholar] [CrossRef]
- Coville, J.; Dávila, J.; Martínez, S. Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ. Equ. 2008, 244, 3080–3118. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, K. Travelling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 1980, 316, 54–70. [Google Scholar] [CrossRef]
- Alfaro, M.; Coville, J. Propagation phenomena in monostable integro-differential equations: Acceleration or not? J. Differ. Equ. 2017, 263, 5727–5758. [Google Scholar] [CrossRef] [Green Version]
- Finkelshtein, D.; Tkachov, P. Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line. Appl. Anal. 2019, 98, 756–780. [Google Scholar] [CrossRef] [Green Version]
- Garnier, J. Accelerating solutions in integro-differential equations. SIAM J. Math. Anal. 2011, 43, 1955–1974. [Google Scholar] [CrossRef] [Green Version]
- Garnier, J.; Hamel, F.; Roques, L. Transition fronts and stretching phenomena for a general class of reaction-dispersion equations. Discret. Contin. Dyn. Syst. 2017, 37, 743–756. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, H.F. Long-time behavior of a class of biological models. SIAM J. Math. Anal. 1982, 13, 353–396. [Google Scholar] [CrossRef]
- Weinberger, H.F.; Lewis, M.A.; Li, B. Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 2002, 45, 183–218. [Google Scholar] [CrossRef]
- Ma, S. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differ. Equ. 2001, 171, 294–314. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Li, W.-T.; Lin, G. Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications. Z. Angew. Math. Phys. 2009, 60, 377–392. [Google Scholar] [CrossRef]
- Xu, W.-B.; Li, W.-T.; Ruan, S. Spatial propagation in nonlocal dispersal Fisher-KPP equations. J. Funct. Anal. 2021, 280, 108957. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, R.; Xu, W.-B. The Traveling Wave Solutions in a Mixed-Diffusion Epidemic Model. Fractal Fract. 2022, 6, 217. https://doi.org/10.3390/fractalfract6040217
Hou R, Xu W-B. The Traveling Wave Solutions in a Mixed-Diffusion Epidemic Model. Fractal and Fractional. 2022; 6(4):217. https://doi.org/10.3390/fractalfract6040217
Chicago/Turabian StyleHou, Ru, and Wen-Bing Xu. 2022. "The Traveling Wave Solutions in a Mixed-Diffusion Epidemic Model" Fractal and Fractional 6, no. 4: 217. https://doi.org/10.3390/fractalfract6040217
APA StyleHou, R., & Xu, W.-B. (2022). The Traveling Wave Solutions in a Mixed-Diffusion Epidemic Model. Fractal and Fractional, 6(4), 217. https://doi.org/10.3390/fractalfract6040217