On Non Local p-Laplacian with Right Hand Side Radon Measure
Abstract
:1. Introduction
2. Preliminaries
2.1. Orlicz Spaces
2.2. Fractional Sobolev Spaces
2.3. Isoperimetric Inequalities
3. Main Results
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cont, R.; Tankov, P. Financial modelling with jump processes. In Chapman Hall/CRC Financial Mathematics Series; Chapman Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Milakis, E.; Silvestre, L. Regularity for the nonlinear Signorini problem. Adv. Math. 2008, 217, 1301–1312. [Google Scholar] [CrossRef]
- Chermisi, M.; Valdinoci, E. A symmetry result for a general class of divergence form PDEs in fibered media. Nonlinear Anal. Theory Methods Appl. 2010, 73, 695–703. [Google Scholar] [CrossRef]
- Biler, P.; Karch, G.; Monneau, R. Nonlinear diffusion of dislocation density and self-similar solutions. Commun. Math. Phys. 2010, 294, 145–168. [Google Scholar] [CrossRef]
- Whitham, G.B. Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley Interscience; John Wiley and Sons: New York, NY, USA, 1974. [Google Scholar]
- Caffarelli, L.; Mellet, A.; Sire, Y. Traveling waves for a boundary reaction-diffusion equation. arXiv 2011, arXiv:1101.4381. [Google Scholar] [CrossRef]
- Kurzke, M. A nonlocal singular perturbation problem with periodic well potential. ESAIM Control Optim. Calc. Var. 2006, 12, 52–63. [Google Scholar] [CrossRef]
- Cabre, X.; Sola-Morales, J. Layer solutions in a half-space for boundary reactions. Commun. Pure Appl. Math. 2005, 58, 1678–1732. [Google Scholar] [CrossRef]
- Biler, P.; Karch, G.; Woyczynski, W.A. Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws. In Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire; Elsevier Masson: Paris, France, 2001; Volume 18, pp. 613–637. [Google Scholar]
- Mingione, G. Gradient potential estimates. J. Eur. Math. Soc. 2011, 13, 459–486. [Google Scholar] [CrossRef]
- Caffarelli, L.; Vasseur, A. Drift diffusion equations with fractional diffusion and the quasigeostrophic equation. Ann. Math. 2010, 171, 1903–1930. [Google Scholar] [CrossRef]
- Fefferman, C. Relativistic stability of matter. Rev. Mat. Iberoam. 1986, 2, 119–213. [Google Scholar] [CrossRef]
- Duistermaat, J.J.; Guillemin, V.W. The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 1975, 29, 3979. [Google Scholar] [CrossRef]
- Bates, P.W. On some nonlocal evolution equations arising in materials science. Nonlinear Dyn. Evol. Equ. 2006, 48, 13–52. [Google Scholar]
- Caffarelli, L.; Valdinoci, E. Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial. Differ. Equ. 2011, 41, 203–240. [Google Scholar] [CrossRef]
- Mingione, G. The singular set of solutions to non-differentiable elliptic systems. Arch. Ration. Mech. Anal. 2003, 166, 287–301. [Google Scholar] [CrossRef]
- Silvestre, L. Regularity of the Obstacle Problem for a Fractional Power of the Laplace Operator. Ph.D. Thesis, Austin University, Austin, TX, USA, 2005. [Google Scholar]
- Karelsen, K.H.; Petitta, F.; Ulusoy, S. A duality approach to the fractional laplacian with measure data. Publ. Mat. 2011, 55, 151–161. [Google Scholar] [CrossRef]
- Ros-Oton, X.; Serra, J. The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary. J. Math. Pures Appl. 2014, 101, 275–302. [Google Scholar] [CrossRef]
- Barrios, B.; De Bonis, I.; Medina, M.; Peral, I. Semilinear problems for the fractional laplacien with singular nonlinearity. Open Math. 2015, 13, 390–407. [Google Scholar] [CrossRef]
- Barrios, B.; Peral, I.; Vita, S. Some remarks about the summability of nonlocal nonlinear problems. Adv. Nonlinear Anal. 2015, 4, 91–107. [Google Scholar] [CrossRef]
- Abdellaoui, B.; Attar, A.; Bentifour, R. On the fractional p-Laplacian equations with weight and general datum. Adv. Nonlinear Anal. 2019, 8, 144–174. [Google Scholar] [CrossRef]
- Boccardo, L.; Gallouet, T. Nonlinear elliptic equations with right hand side measures. Commun. Partial. Differ. Equ. 1992, 17, 641–655. [Google Scholar] [CrossRef]
- Gossez, J.-P. Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 1974, 190, 163–205. [Google Scholar] [CrossRef]
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Demengel, F.; Demengel, G. Functional Spaces for the Theory of Elliptic Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Alberico, A.; Cianchi, A.; Pick, L.; Slavikova, L. Fractional Orlicz-Sobolev Embeddings. Available online: https://arxiv.org/pdf/2001.05565.pdf (accessed on 15 January 2020).
- Fusco, N.; Millot, V.; Mori, M. A quantitative isoperimetric inequality for fractional perimeters. J. Funct. Anal. 2011, 261, 697–715. [Google Scholar] [CrossRef]
- Talenti, G. Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura Appl. 1979, 120, 159–184. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kbiri Alaoui, M. On Non Local p-Laplacian with Right Hand Side Radon Measure. Fractal Fract. 2022, 6, 464. https://doi.org/10.3390/fractalfract6090464
Kbiri Alaoui M. On Non Local p-Laplacian with Right Hand Side Radon Measure. Fractal and Fractional. 2022; 6(9):464. https://doi.org/10.3390/fractalfract6090464
Chicago/Turabian StyleKbiri Alaoui, Mohammed. 2022. "On Non Local p-Laplacian with Right Hand Side Radon Measure" Fractal and Fractional 6, no. 9: 464. https://doi.org/10.3390/fractalfract6090464
APA StyleKbiri Alaoui, M. (2022). On Non Local p-Laplacian with Right Hand Side Radon Measure. Fractal and Fractional, 6(9), 464. https://doi.org/10.3390/fractalfract6090464