Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation
(This article belongs to the Section Engineering)
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- If , Theorem 6 becomes result for cr-convex functions:
- If , Theorem 6 becomes result for cr-s-convex function:
4. Jensen-Type Inequality
- If , Theorem 10 becomes result for cr-convex functions:
- If , Theorem 10 becomes result for cr-s-convex function:
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moore, R.E. Interval Analysis; Prentice-Hall: Hoboken, NJ, USA, 1966. [Google Scholar]
- Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130. [Google Scholar]
- Qian, Y.; Liang, J.; Dang, C. Interval ordered information systems. Comput. Math. Appl. 2008, 56, 1994–2009. [Google Scholar] [CrossRef]
- Bettahalli Kengegowda, D.; Kamidoddi Chowdaiah, S.; Harinahalli Lokesh, G.; Flammini, F. Classification and Merging Techniques to Reduce Brokerage Using Multi-Objective Optimization. Algorithms 2022, 15, 70. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Educ. 2011, 55, 9–15. [Google Scholar] [CrossRef]
- de Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Song, C.; Tin-Loi, F. Probabilistic interval analysis for structures with uncertainty. Struct. Saf. 2010, 32, 191–199. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Qiu, Z. A feasible implementation procedure for interval analysis method from measurement data. Appl. Math. Model. 2014, 38, 2377–2397. [Google Scholar] [CrossRef]
- Xiaoju, Z.; Shabbir, K.; Afzal, W.; Xiao, H.; Lin, D. Hermite–Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova–Levin Functions. J. Math. 2022, 2022, 3830324. [Google Scholar]
- Faisal, S.; Adil Khan, M.; Khan, T.U.; Saeed, T.; Alshehri, A.M.; Nwaeze, E.R. New “Conticrete” Hermite–Hadamard–Jensen–Mercer Fractional Inequalities. Symmetry 2022, 14, 294. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite–Hadamard type for functions of selfadjoint operators and matrices. J. Math. Inequalities 2017, 11, 241–259. [Google Scholar] [CrossRef]
- Kamenskii, M.; Petrosyan, G.A.R.I.K.; Wen, C.F. An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space. J. Nonlinear Var. Anal. 2021, 5, 155–177. [Google Scholar]
- Zhao, D.; An, T.; Ye, G.; Torres, D.F. On Hermite–Hadamard type inequalities for harmonical h-convex interval-valued functions. arXiv 2019, arXiv:1911.06900. [Google Scholar]
- Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S.; Zaini, H.G. Hermite–Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
- Afzal, W.; Alb Lupaş, A.; Shabbir, K. Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h 1, h 2)-Godunova–Levin Interval-Valued Functions. Mathematics 2022, 10, 2970. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Old and new on the Hermite–Hadamard inequality. Real Anal. Exch. 2004, 29, 663–686. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Khan, H.; Chu, Y.M. On new fractional integral inequalities for p-convexity within interval-valued functions. Adv. Differ. Equ. 2020, 2020, 330. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions. Adv. Differ. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
- Nowicka, M.; Witkowski, A. Applications of the Hermite–Hadamard inequality. arXiv 2016, arXiv:1603.07170. [Google Scholar] [CrossRef]
- Mihai, M.V.; Awan, M.U.; Noor, M.A.; Kim, J.K.; Noor, K.I. Hermite–Hadamard inequalities and their applications. J. Inequalities Appl. 2018, 2018, 309. [Google Scholar] [CrossRef]
- Xiao, L.; Lu, G. A new refinement of Jensen’s inequality with applications in information theory. Open Math. 2020, 18, 1748–1759. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Safdar, F.; Islam, A.; Mihai, M.V.; Noor, K.I. Hermite–Hadamard type inequalities with applications. Miskolc Math. Notes 2020, 21, 593–614. [Google Scholar] [CrossRef]
- Breckner, W.W. Continuity of generalized convex and generalized concave set-valued functions. Rev. D’Anal. Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
- Chalco-Cano, Y.; Flores-Franulič, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Sets Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
- Matkowski, J.; Nikodem, K. An integral Jensen inequality for convex multifunctions. Results Math. 1994, 26, 348–353. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Botmart, T. Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h1, h2)-Godunova-Levin functions. AIMS Math. 2022, 7, 19372–19387. [Google Scholar] [CrossRef]
- Wu, Y.; Qi, F. Discussions on two integral inequalities of Hermite–Hadamard type for convex functions. J. Comput. Appl. Math. 2022, 406, 114049. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite–Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some new Jensen, Schur and Hermite–Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Math. 2022, 7, 4338–4358. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
- Luo, C.; Wang, H.; Du, T. Fejér–Hermite–Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications. Chaos Solitons Fractals 2020, 131, 109547. [Google Scholar] [CrossRef]
- Sun, W. Generalized h-convexity on fractal sets and some generalized Hadamard-type inequalities. Fractals 2020, 28, 2050021. [Google Scholar] [CrossRef]
- Almutairi, O.; Kılıçman, A. Some integral inequalities for h-Godunova–Levin preinvexity. Symmetry 2019, 11, 1500. [Google Scholar] [CrossRef]
- Ali, S.; Ali, R.S.; Vivas-Cortez, M.; Mubeen, S.; Rahman, G.; Nisar, K.S. Some fractional integral inequalities via h-Godunova–Levin preinvex function. AIMS Math. 2022, 7, 13832–13844. [Google Scholar] [CrossRef]
- Bhunia, A.K.; Samanta, S.S. A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng. 2014, 74, 169–178. [Google Scholar] [CrossRef]
- Rahman, M.S.; Shaikh, A.A.; Bhunia, A.K. Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function. Comput. Ind. Eng. 2020, 147, 106634. [Google Scholar] [CrossRef]
- Shi, F.; Ye, G.; Liu, W.; Zhao, D. cr-h-convexity and some inequalities for cr-h-convex function. Filomat 2022. submitted. [Google Scholar]
- Liu, W.; Shi, F.; Ye, G.; Zhao, D. The Properties of Harmonically cr-h-Convex Function and Its Applications. Mathematics 2022, 10, 2089. [Google Scholar] [CrossRef]
- Markov, S. Calculus for interval functions of a real variable. Computing 1979, 22, 325–337. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Treanţă, S. Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal Fract. 2022, 6, 518. https://doi.org/10.3390/fractalfract6090518
Afzal W, Abbas M, Macías-Díaz JE, Treanţă S. Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal and Fractional. 2022; 6(9):518. https://doi.org/10.3390/fractalfract6090518
Chicago/Turabian StyleAfzal, Waqar, Mujahid Abbas, Jorge E. Macías-Díaz, and Savin Treanţă. 2022. "Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation" Fractal and Fractional 6, no. 9: 518. https://doi.org/10.3390/fractalfract6090518
APA StyleAfzal, W., Abbas, M., Macías-Díaz, J. E., & Treanţă, S. (2022). Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal and Fractional, 6(9), 518. https://doi.org/10.3390/fractalfract6090518