New Outcomes Regarding the Existence of Hilfer Fractional Stochastic Differential Systems via Almost Sectorial Operators
Abstract
:1. Introduction
2. Preliminaries
- Suppose , accompanying is a Banach space with .
- Suppose , corresponding and the implementation are compact whenever A is compact.
- For all , there exists such that
- For , and .
- For , .
- Let , then and .
- (a)
- ;
- (b)
- , given by for all ϖ < δ < π and ∃ Mδ be a constant,
- is analytic and
- for all
- , where be the constant;
- If . Then
- , and .
- are strongly continuous, for .
- The bounded linear operators on are , for all fixed , and we have
3. Existence of Mild Solution
- (H1)
- The operator is compact.
- (H2)
- The multivalued map is measurable to ℘ for all fixed , u.s.c. to z for every and for all the set
- (H3)
- There exists a constant and satisfying
- (H4)
- For the function , there exists such that
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HF | Hilfer Fractional |
R-L | Riemann Liouville |
References
- Diemling, K. Multivalued Differential Equations; De Gruyter Series in Nonlinear Analysis and Applications; De Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. Basic Theory of Fractional Differential Equations. Nonlinear Anal. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Applied Mathematical Sciences; v.44; Springer: New York, NY, USA, 1983. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Zhang, Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215, 524–529. [Google Scholar] [CrossRef]
- Duan, J.S. Time- and space-fractional partial differential equations. J. Math. Phys. 2005, 46, 1063–1071. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 2003, 172, 65–77. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Langlands, T.A.M.; Henry, B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205, 719–736. [Google Scholar] [CrossRef]
- Agarwal, R.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Udhayakumar, R. Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay. Chaos Solitons Fractals 2020, 139, 110019. [Google Scholar] [CrossRef]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Elsevier: New York, NY, USA, 2015. [Google Scholar]
- Ahmed, N.; Macías-Díaz, J.E.; Raza, A.; Baleanu, D.; Rafiq, M.; Iqbal, Z.; Ahmad, M.O. Design, Analysis and Comparison of a Nonstandard Computational Method for the Solution of a General Stochastic Fractional Epidemic Model. Axioms 2022, 11, 10. [Google Scholar] [CrossRef]
- Iqbal, Z.; Rehman, M.A.; Ahmed, N.; Raza, A.; Rafiq, M.; Khan, I.; Nisar, K.S. Structure Preserving Algorithm for Fractional Order Mathematical Model of COVID-19. Comput. Mater. Contin. 2022, 71, 2141–2157. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Ahmed, N.; Akgul, A.; Raza, A.; Shahzad, M.; Iqbal, Z.; Rafiq, M.; Jarad, F. Analysis of the fractional diarrhea model with Mittag-Leffler kernel. AIMS Math. 2022, 7, 13000–13018. [Google Scholar] [CrossRef]
- Akgul, A.; Ahmed, N.; Raza, A.; Iqbal, Z.; Rafiq, M.; Rehman, M.A.; Baleanu, D. A Fractal Fractional Model for Cervical Cancer due to Human Papillomavirus Infection. Fractals 2021, 29, 2140015. [Google Scholar] [CrossRef]
- Akgul, A.; Sajid Iqbal, M.; Fatima, U.; Ahmed, N.; Iqbal, Z.; Raza, A.; Rafiq, M.; Rehman, M.A. Optimal existence of fractional order computer virus epidemic model and numerical simulations. Math. Methods Appl. Sci. 2021, 44, 10673–10685. [Google Scholar] [CrossRef]
- Mao, X. Stochastic Differential Equations and Applications; Horwood: Chichestic, UK, 1997. [Google Scholar]
- Luo, J. Stability of stochastic partial differential equations with infinite delays. J. Comput. Appl. Math. 2008, 222, 364–371. [Google Scholar] [CrossRef]
- Liu, K. Stability of Infinite Dimensional Stochastic Differential Equations with Applications; Chapman & Hall/CRC: London, UK, 2006. [Google Scholar]
- Ma, X.; Shu, X.B.; Mao, J. Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay. Stoch. Dyn. 2020, 20, 2050003. [Google Scholar] [CrossRef]
- Balasubramaniam, P.; Tamilalagan, P. Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function. Appl. Math. Comput. 2015, 256, 232–246. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, M.; Shu, X.B.; Xu, F. The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm. Stoch. Anal. Appl. 2020, 39, 643–666. [Google Scholar] [CrossRef]
- Sivasankar, S.; Udhayakumar, R. Hilfer Fractional Neutral Stochastic Volterra Integro-Differential Inclusions via Almost Sectorial Operators. Mathematics 2022, 10, 2074. [Google Scholar] [CrossRef]
- Sivasankar, S.; Udhayakumar, R. A note on approximate controllability of second-order neutral stochastic delay integro-differential evolution inclusions with impulses. Math. Methods Appl. Sci. 2022, 45, 6650–6676. [Google Scholar] [CrossRef]
- Periago, F.; Straub, B. A functional caculus for almost sectorial operators and applications to abstract evolution equations. J. Evol. Equ. 2002, 2, 41–62. [Google Scholar] [CrossRef]
- Wang, R.N.; Chen, D.H.; Xiao, T.J. Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 2012, 252, 202–235. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.B.; Shi, Y. A study on mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 2016, 273, 465–476. [Google Scholar] [CrossRef]
- Shu, X.B.; Lai, Y.; Chen, Y. The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal. 2011, 73, 2003–2011. [Google Scholar] [CrossRef]
- Alsarori, N.; Ghadle, K.; Sessa, S.; Saleh, H.; Alabiad, S. New study of existence and dimension of the set of solutions for nonlocal impulsive differential inclusions with sectorial operator. Symmetry 2021, 13, 491. [Google Scholar] [CrossRef]
- Ding, X.L.; Ahmad, B. Analytical solutions to fractional evolution evolutions with almost sectorial operators. Adv. Differ. Equ. 2016, 2016, 203. [Google Scholar] [CrossRef]
- Li, F. Mild solutions for abstract differential equations with almost sectorial operators and infinite delay. Adv. Differ. Equ. 2013, 2013, 327. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y. Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 2014, 257, 145–157. [Google Scholar] [CrossRef]
- Varun Bose, C.S.; Udhayakumar, R. A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators. Math. Methods Appl. Sci. 2022, 45, 2530–2541. [Google Scholar] [CrossRef]
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Hilfer, R. Experimental evidence for fractional time evolution in glass materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; Jarad, F.; Abdeljawad, T. Existence of mild solutions to Hilfer fractional evolution equations in Banach space. Ann. Funct. Anal. 2021, 12, 12. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Q. Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 2017, 40, 1126–1138. [Google Scholar] [CrossRef]
- Gu, H.; Trujillo, J.J. Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar]
- Du, J.; Jiang, W.; Pang, D.; Niazi, A.U.K. Exact controllability for Hilfer fractional differential inclusions involving nonlocal initial conditions. Complexity 2018, 2018, 9472847. [Google Scholar] [CrossRef]
- Furati, K.M.; Kassim, M.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 641, 616–626. [Google Scholar] [CrossRef]
- Harrat, A.; Nieto, J.J.; Debbouche, A. Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke subdifferential. J. Comput. Appl. Math. 2018, 344, 725–737. [Google Scholar] [CrossRef]
- Bedi, P.; Kumar, A.; Abdeljiawad, T.; Khan, Z.A.; Khan, A. Existence and approaximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2020, 2020, 615. [Google Scholar] [CrossRef]
- Jaiswal, A.; Bahuguna, D. Hilfer fractional differential equations with almost sectorial operators. Differ. Equ. Dyn. Syst. 2020. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Debbouche, A.; Torres, D.F.M. Analysis of Hilfer fractional integro-differential equations with almost sectorial operators. Fractal Fract. 2021, 5, 22. [Google Scholar] [CrossRef]
- Nisar, K.S.; Vijayakumar, V. Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. Math. Methods Appl. Sci. 2021, 139, 110019. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Anthoni, S.M. Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 2013, 225, 708–717. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y. Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. 2011, 12, 3642–3653. [Google Scholar] [CrossRef]
- Lunardi, A. Analytic Semigroup and Optimal Regularity in Parabolic Problems; Birkhäuser: Basel, Switzerland, 1995. [Google Scholar]
- Zhou, M.; Li, C.; Zhou, Y. Existence of mild solutions for Hilfer fractional differential evolution equations with almost sectorial operators. Axioms 2022, 11, 144. [Google Scholar] [CrossRef]
- Lasota, A.; Opial, A. An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map. Bull. L’Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 1965, 13, 781–786. [Google Scholar]
- Dhage, B.C. On a fixed point theorem in Banach algebras with applications. Appl. Math. Lett. 2005, 18, 273–280. [Google Scholar] [CrossRef]
- Dhage, B.C. Multi-valued mappings and fixed points I. Nonlinear Funct. Anal. Appl. 2005, 10, 359–378. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivasankar, S.; Udhayakumar, R. New Outcomes Regarding the Existence of Hilfer Fractional Stochastic Differential Systems via Almost Sectorial Operators. Fractal Fract. 2022, 6, 522. https://doi.org/10.3390/fractalfract6090522
Sivasankar S, Udhayakumar R. New Outcomes Regarding the Existence of Hilfer Fractional Stochastic Differential Systems via Almost Sectorial Operators. Fractal and Fractional. 2022; 6(9):522. https://doi.org/10.3390/fractalfract6090522
Chicago/Turabian StyleSivasankar, Sivajiganesan, and Ramalingam Udhayakumar. 2022. "New Outcomes Regarding the Existence of Hilfer Fractional Stochastic Differential Systems via Almost Sectorial Operators" Fractal and Fractional 6, no. 9: 522. https://doi.org/10.3390/fractalfract6090522
APA StyleSivasankar, S., & Udhayakumar, R. (2022). New Outcomes Regarding the Existence of Hilfer Fractional Stochastic Differential Systems via Almost Sectorial Operators. Fractal and Fractional, 6(9), 522. https://doi.org/10.3390/fractalfract6090522