Exponential Scattering for a Damped Hartree Equation
Abstract
:1. Introduction
2. Background and Main Results
2.1. Preliminary
- 1.
- , for any admissible couple ;
- 2.
- implies that .
- 1.
- If , the energy is well-defined, by use of the inequality (4). Therefore, it seems that the previous theorem also holds;
- 2.
- this condition , which seems to be technical, gives the restriction ;
- 3.
- for the sake of completeness, the previous result is proved in the Appendix A.
2.2. Main Result
- 1.
- ;
- 2.
- and ;
- 3.
- , and , where ϕ is the ground state of
- 1.
- Let us present a comparison with the classical (non-damped) non-linear Schrödinger problem.
- 2.
- The uniqueness of ground states for the above problem was obtained in [19];
- 3.
- The spherically symmetric assumption avoids a loss of regularity in Strichartz estimates [20];
- 4.
- To the authors’ knowledge, there is no existing work dealing with the damped fractional generalized Hartree equation;
- 5.
- 6.
2.3. Tools
- 1.
- there exists a (best) constant , such that for any ,
- 2.
- moreoverwhere ϕ is the ground state solution to (3).
- 1.
- if , then
- 2.
3. Proof of Theorem 1
3.1. The Defocusing Case .
3.2. The Focusing Case .
- 1.
- First case: .Thanks to the energy conservation law and the Gagliardo–Nirenberg inequality (4), writeDenoting the real function and using the mass decay (2), it follows thatSince , one obtains . Then, by the Young inequalityThus,Since , one getsUsing the Gronwall Lemma, it follows thatThis implies thatThen, arguing as in (5), the proof of the exponential scattering follows by Lemma 3.
- 2.
- Second case: and .Taking account of the Gronwall Lemma, one obtains for large timeThe proof follows as previously.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Laskin, N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, K.; Lenzmann, E.; Staffilani, G. On the continuum limit for discrete NLS with longrange lattice interactions. Commun. Math. Phys. 2013, 317, 563–591. [Google Scholar] [CrossRef] [Green Version]
- Ionescu, A.D.; Pusateri, F. Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 2014, 266, 139–176. [Google Scholar] [CrossRef]
- Obrecht, C.; Saut, J.-C. Remarks on the full dispersion Davey–Stewartson system. Commun. Pure Appl. Anal. 2015, 14, 1547–1561. [Google Scholar] [CrossRef]
- Mingaleev, S.; Christiansen, P.; Gaididei, Y.; Johannson, M.; Rasmussen, K. Models for energy and charge transport and storage in biomolecules. J. Biol. Phys. 1999, 25, 41–63. [Google Scholar] [CrossRef] [PubMed]
- Gaididei, Y.B.; Mingaleev, S.F.; Christiansen, P.L.; Rasmussen, K.Ø. Effects of nonlocal dispersive interactions on self-trapping excitations. Phys. Rev. E 1997, 55, 6141–6150. [Google Scholar] [CrossRef] [Green Version]
- Elgart, A.; Schlein, B. Mean field dynamics of boson stars. Commun. Pure Appl. Math. 2007, 60, 500–545. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, J.; Jonsson, B.L.G.; Lenzmann, E. Boson stars as solitary waves. Commun. Math. Phys. 2007, 274, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, J.; Jonsson, B.L.G.; Lenzmann, E. Effective dynamics for boson stars. Nonlinearity 2007, 20, 1031–1075. [Google Scholar] [CrossRef]
- Lieb, E.H.; Yau, H.-T. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 1987, 112, 147174. [Google Scholar] [CrossRef]
- Ohta, M.; Todorova, G. Remarks on global existence and blowup for damped non-linear Schrödinger equations. Discret. Contin. Dyn. Syst. 2009, 23, 1313–1325. [Google Scholar] [CrossRef]
- Saanouni, T. Remarks on damped fractional Schrödinger equation with pure power nonlinearity. J. Math. Phys. 2015, 56, 061502. [Google Scholar] [CrossRef]
- Feng, B.; Zhao, D.; Sun, C. On the Cauchy problem for the non-linear Schrödinger equations with time-dependent linear loss/gain. J. Math. Anal. Appl. 2014, 416, 901–923. [Google Scholar] [CrossRef]
- Inui, T. Asymptotic behavior of the nonlinear damped Schrödinger equation. Proc. Am. Math. Soc. 2019, 147, 763–773. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, H. Stability of standing waves for the fractional Schrödinger-Hartree equation. J. Math. Anal. Appl. 2018, 460, 352–364. [Google Scholar] [CrossRef]
- Masaki, S. A sharp scattering condition for focusing mass-subcritical nonlinear schröodinger equation. Commun. Pure Appl. Anal. 2015, 14, 1481–1531. [Google Scholar] [CrossRef]
- Visciglia, N. On the decay of solutions to a class of defocusing NLS. Math. Res. Lett. 2009, 16, 919–926. [Google Scholar] [CrossRef]
- Frank, R.L.; Lenzmann, E.; Silvestre, L. Uniqueness of Radial Solutions for the Fractional Laplacian. Comm. Pur. Appl. Math. 2016, 69, 1671–1726. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Wang, Y. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J. Anal. Math. 2014, 124, 1–38. [Google Scholar] [CrossRef]
- Kirkpatrick, K.; Zhang, Y. Fractional Schrödinger dynamics and decoherence. Phys. Nonl. Phenom. 2016, 332, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Klein, C.; Sparber, C.; Markowich, P. Numerical study of fractional nonlinear Schrödinger equations. Proc. R. Soc. A 2014, 470, 20140364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saanouni, T. A note on the fractional Schrödinger equation of Choquard type. J. Math. Anal. Appl. 2019, 470, 1004–1029. [Google Scholar] [CrossRef]
- Lieb, E.; Loss, M. Analysis, 2nd ed.; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2001; Volume 14. [Google Scholar]
- Christ, M.; Weinstein, M. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 1991, 100, 87–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, T.; Boulaaras, S.; Saanouni, T. Exponential Scattering for a Damped Hartree Equation. Fractal Fract. 2023, 7, 51. https://doi.org/10.3390/fractalfract7010051
Alharbi T, Boulaaras S, Saanouni T. Exponential Scattering for a Damped Hartree Equation. Fractal and Fractional. 2023; 7(1):51. https://doi.org/10.3390/fractalfract7010051
Chicago/Turabian StyleAlharbi, Talal, Salah Boulaaras, and Tarek Saanouni. 2023. "Exponential Scattering for a Damped Hartree Equation" Fractal and Fractional 7, no. 1: 51. https://doi.org/10.3390/fractalfract7010051
APA StyleAlharbi, T., Boulaaras, S., & Saanouni, T. (2023). Exponential Scattering for a Damped Hartree Equation. Fractal and Fractional, 7(1), 51. https://doi.org/10.3390/fractalfract7010051