Fixed Point for Almost Contractions in v-Generalized b-Metric Spaces
Abstract
:1. Introduction
- 1.
- if and only if ,
- 2.
- ,
- 3.
- for some real number .
- 1.
- if and only if ,
- 2.
- ,
- 3.
- for all distinct points in Δ, where (the set of natural numbers).
2. v-Generalized b-Metric Spaces
- 1.
- if and only if ,
- 2.
- ,
- 3.
- for some real number and ∀ ∈Δ such that are all distinct.”
- 1.
- A convergent sequence that converges to a point x in Δ if for given , there exists a positive integer N such that for all . It can be written as whenever .
- 2.
- A Cauchy sequence if for given , there exists a positive integer N such that for all ; it is denoted as whenever .
3. Almost Contractions in -Generalized -Metric Spaces
- 1.
- If and then, we haveandThis proves that the ordinary Banach contraction is not satisfied; hence, Theorem 2.1 in [19] is not applicable to Example 4.
- 2.
- If and , then we haveandfor any . Thus, Theorem 2.7 in [20] does not ensure the existence of a fixed point for Γ.
- 3.
- If and , then we haveandfor any . Thus, Theorem 3 in [21] does not ensure the existence of a fixed point of map Γ.
- 4.
- If and , then we haveandfor any ; thus, Theorem 2.5 in [19] is not applicable to Example 4.
4. Consequences
5. Application to Fredholm Integral Equation
6. Conclusions and Open Problem
- Is it feasible to relax the hypothesis in Theorem 2?
- Is the existence and uniqueness of fixed point for a generalized almost contraction of Cirić type in v-generalized b-metric spaces, i.e., a map satisfying
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakhtin, I.A. The contraction mapping principle in quasi-metric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debr. 2000, 57, 31–37. [Google Scholar] [CrossRef]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Berlin, Germany, 2014. [Google Scholar]
- Asadi, M.; Karapinar, E.; Kumar, A. α-ψ-Geraghty contractions on generalized metric spaces. J. Inequalities Appl. 2014, 2014, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Aydi, H.; Karapinar, E.; Bota, M.F.; Mitrovic, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef] [Green Version]
- Afshari, H.; Aydi, H.; Karapinar, E. On generalized α-ψ-Geraghty contractions on b-metric spaces. Georgian Math. J. 2020, 27, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Czerwik, S.; Dlutek, K.; Singh, S.L. Round-off stability of iteration procedures for operators in b-metric spaces. J. Natur. Phys. Sci. 2001, 15, 1–8. [Google Scholar]
- Bota, M.; Molnar, A.; Varga, C. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21–28. [Google Scholar]
- Aleksić, S.; Huang, H.; Mitrović, Z.; Radenović, S. Remarks on some fixed point results in b-metric space. J. Fixed Point Theory Appl. 2018, 20, 1–17. [Google Scholar] [CrossRef]
- Hussain, N.; Dorić, D.; Kadelburg, Z.; Radenović, S. Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012, 126, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Faraji, H.; Savić, D.; Radenović, S. Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications. Axioms 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T. Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Suzuki, T.; Alamri, B.; Khan, L.A. Some notes on fixed point theorems in v-generalized metric spaces. Bull. Kyushu Inst. Tech. Pure Appl. Math. 2015, 62, 15–23. [Google Scholar]
- Kirk, W.; Shahzad, N. Generalized metrics and Cartisi’s theorem. Fixed Point Theory Appl. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Younis, M.; Sretenović, A.; Radenović, S. Some critical remarks on “Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations”. Nonlinear Anal. Model. Control 2022, 27, 163–178. [Google Scholar] [CrossRef]
- Kumam, P.; Dung, N.V. Some remarks on generalized metric spaces of Branciari. Sarajevo J. Math. 2014, 10, 209–219. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Radenović, S. The Banach and Reich contractions in bv(s)-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 3087–3095. [Google Scholar] [CrossRef]
- Došenović, T.; Kadelburg, Z.; Mitrović, Z.D.; Radenović, S. New fixed point results in bv(s)-metric spaces. Math. Slovaca 2020, 70, 441–452. [Google Scholar] [CrossRef]
- Karahan, I.; Isik, I. Generalizations of Banach, Kannan and Ciric Fixed point theorems in bv(s) metric spaces. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2019, 81, 73–80. [Google Scholar]
- Mirovic, Z.D.; Aydi, H.; Kadelburg, Z.; Rad, G.S. On some rational contractions in bv(s)-metric spaces. Rend. Circ. Mat. Palermo Ser. 2019, 2, 1–11. [Google Scholar]
- Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004, 9, 43–53. [Google Scholar]
- Babu, G.V.R.; Sandhya, M.L.; Kameswari, M.V.R. A note on a fixed point theorem of Berinde on weak contractions. Carpathian Math. 2008, 24, 8–12. [Google Scholar]
- Berinde, V. General constructive fixed point theorems for Cirić-type almost contractions in metric spaces. Carpathian J. Math. 2008, 24, 10–19. [Google Scholar]
- Haghi, R.H.; Rezapour, S.; Shahzad, N. Some fixed point generalizations are not real generalizations. Nonlinear Anal. 2011, 74, 1799–1803. [Google Scholar] [CrossRef]
- George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contractive principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadyan, A.; Rathee, S.; Kumar, A.; Rani, A.; Tas, K. Fixed Point for Almost Contractions in v-Generalized b-Metric Spaces. Fractal Fract. 2023, 7, 60. https://doi.org/10.3390/fractalfract7010060
Kadyan A, Rathee S, Kumar A, Rani A, Tas K. Fixed Point for Almost Contractions in v-Generalized b-Metric Spaces. Fractal and Fractional. 2023; 7(1):60. https://doi.org/10.3390/fractalfract7010060
Chicago/Turabian StyleKadyan, Anshuka, Savita Rathee, Anil Kumar, Asha Rani, and Kenan Tas. 2023. "Fixed Point for Almost Contractions in v-Generalized b-Metric Spaces" Fractal and Fractional 7, no. 1: 60. https://doi.org/10.3390/fractalfract7010060
APA StyleKadyan, A., Rathee, S., Kumar, A., Rani, A., & Tas, K. (2023). Fixed Point for Almost Contractions in v-Generalized b-Metric Spaces. Fractal and Fractional, 7(1), 60. https://doi.org/10.3390/fractalfract7010060