The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries and Notations
3. Main Results
4. Existence Results for the Problem (1)
5. Ulam’s Stability Results
6. Example
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Debnath, L. A brief historical introduction to fractional calculus. Internat. J. Math. Ed. Sci. Tec. 2004, 35, 487–501. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Trujillo, J.J. Differential equations of fractional order, methods, results and problem. Appl. Anal. 2013, 78, 153–192. [Google Scholar] [CrossRef]
- Rizwan, R.; Zada, A.; Wang, U. Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses. Adv. Differ. Equ. 2019, 85, 85. [Google Scholar] [CrossRef]
- Wang, G.; Ahmad, B.; Zhang, L. Impulsive anti–periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74, 792–804. [Google Scholar] [CrossRef]
- Wang, J.; Zada, A.; Li, W. Ulams–Type Stability of First–Order Impulsive Differential Equations with Variable Delay in Quasi–Banach Spaces. Int. J. Non. Sci. Num. Sim. 2018, 19, 553–560. [Google Scholar] [CrossRef]
- Zada, A.; Ali, W.; Farina, S. Ulam–Hyers stability of nonlinear differential equations with fractional integrable impulsis. Math. Meth. Appl. Sci. 2017, 40, 5502–5514. [Google Scholar] [CrossRef]
- Zada, A.; Ali, S.; Li, Y. Ulam–type stability for a class of implicit fractional differential equations with non–instantaneous integral impulses and boundary condition. Adv. Differ. Equ. 2017, 2017, 317. [Google Scholar] [CrossRef]
- Lim, S.C.; Li, M.; Teo, L.P. Langevin equation with two fractional orders. Phys. Lett. A 2008, 372, 6309–6320. [Google Scholar] [CrossRef]
- Mainardi, F.; Pironi, P. The fractional Langevin equation: Brownian motion revisited. Extracta Math. 1996, 11, 140–154. [Google Scholar]
- Wang, W.; Khalid, K.H.; Zada, A.; Ben Moussa, S.; Ye, J. q-Fractional Langevin Differential Equation with q-Fractional Integral Conditions. Mathematics 2023, 11, 2132. [Google Scholar] [CrossRef]
- Carvalho, A.; Pinto, C.M.A. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Cont. 2017, 5, 168–186. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Ye, H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Cont. Syst. Technol. 2012, 20, 763–769. [Google Scholar] [CrossRef]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-touic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D. LMI-based stabilization of a class of fractional order chaotic systems. Nonlin. Dynam. 2013, 72, 301–309. [Google Scholar] [CrossRef]
- Lundqvist, M. Silicon Strip Detectors for Scanned Multi-Slit u-Ray Imaging; Kungl Tekniska Hogskolan: Stockholm, Sweden, 2003. [Google Scholar]
- Mellow, T.; Karkkainen, L. On the sound fields of infinitely long strips. J. Acoust. Soc. Am. 2011, 130, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Sun, S.; Lu, H.; Zhao, Y. Existence of Solutions for Fractional Differential Equations with Integral Boundary Condition. Adv. Differ. Equ. 2014, 2014, 25–38. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. A coupled system of nonlocal fractional differential equations with coupled and uncoupled slit-strips type integral boundary conditions. J. Math. Sci. 2017, 226, 175–196. [Google Scholar] [CrossRef]
- Ahmad, B.; Kerthikeyan, P.; Buvaneswari, K. Fractional differential equations with coupled slit-strips type integral boundary conditions. Aims Math. 2019, 4, 1596–1609. [Google Scholar] [CrossRef]
- Lv, Z.; Ahmad, I.; Xu, J.; Zada, A. Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Dervatives with Generalized Slit-Strips Type Integral Boundary Conditions and Impulses. Discret. Dyn. Nat. Soc. 2020, 6, 618–669. [Google Scholar]
- Almaghamsi, L.; Alruwaily, Y.; Karthikeyan, K.; El-hady, E.-S. On Coupled System of Langevin Fractional Problems with Different Orders of μ-Caputo Fractional Derivatives. Discret. Dyn. Nat. Soc. 2020, 2020, 337. [Google Scholar] [CrossRef]
- Almeida, R. A caputo fractional derivative of a function with respect to another function. Common. Nonlinear Sci. Numer. Sumer. 2014, 44, 460–481. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 2010, 26, 103–107. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali Khan, H.N.; Zada, A.; Popa, I.-L.; Ben Moussa, S. The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions. Fractal Fract. 2023, 7, 837. https://doi.org/10.3390/fractalfract7120837
Ali Khan HN, Zada A, Popa I-L, Ben Moussa S. The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions. Fractal and Fractional. 2023; 7(12):837. https://doi.org/10.3390/fractalfract7120837
Chicago/Turabian StyleAli Khan, Haroon Niaz, Akbar Zada, Ioan-Lucian Popa, and Sana Ben Moussa. 2023. "The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions" Fractal and Fractional 7, no. 12: 837. https://doi.org/10.3390/fractalfract7120837
APA StyleAli Khan, H. N., Zada, A., Popa, I.-L., & Ben Moussa, S. (2023). The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions. Fractal and Fractional, 7(12), 837. https://doi.org/10.3390/fractalfract7120837