Nonlinear Piecewise Caputo Fractional Pantograph System with Respect to Another Function
Abstract
:1. Introduction
2. Primitive Results
3. Main Results
- (H1).
- There exists such that
- (H2).
- (H3)
- for each and
- (H4)
- for
- If then ψ-PCPP (6) has a least one solution on
UH Stability Analysis
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osler, J. Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. In Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2022, 265, 229–248. [Google Scholar] [CrossRef]
- Abdo, M.S.; Ibrahim, A.G.; Panchal, S.K. Nonlinear implicit fractional differential equation involving ψ-Caputo fractional derivative. Proc. Jangjeon Math. Soc. 2019, 22, 387–400. [Google Scholar]
- Abdo, M.S.; Abdeljawad, T.; Shah, K.; Ali, S.M. On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivative. Math. Meth. Appl. Sci. 2021, 44, 6581–6600. [Google Scholar] [CrossRef]
- Abdo, M.S.; Abdeljawad, T.; Ali, S.M.; Shah, K.; Jarad, F. Existence of positive solutions for weighted fractional order differential equations. Chaos Solitons Fractals 2020, 141, 110341. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Hammouch, Z. On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 2018, 117, 16–20. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Topics in Fractional Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 27. [Google Scholar]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Alaoui, M.K.; Fayyaz, R.; Khan, A.; Shah, R.; Abdo, M.S. Analytical Investigation of Noyes–Field Model for Time-Fractional Belousov–Zhabotinsky Reaction. Complexity 2021, 2021, 3248376. [Google Scholar] [CrossRef]
- Abood, B.N.; Redhwan, S.S.; Abdo, M.S. Analytical and approximate solutions for generalized fractional quadratic integral equation. Nonlinear Funct. Anal. Appl. 2021, 26, 497–512. [Google Scholar]
- Atangana, A.; G ómez-Aguilar, G.F. Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu. Numer. Meth. Partial Diff. Equ. 2018, 34, 1502–1523. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.M. On the numerical solution of fractional Sturm- Liouville problems. Int. J. Comput. 2010, 87, 2837–2845. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 2015, 266, 615–622. [Google Scholar] [CrossRef]
- Ntouyas, S.K. Global existence results for certain second order delay integrodifferential equations with nonlocal conditions. Dyn. Syst. Appl. 1998, 7, 415–426. [Google Scholar]
- Kumar, A.; Chauhan, H.V.S.; Ravichandran, C.; Nisar, K.S.; Baleanu, D. Existence of solutions of non-autonomous fractional differential equations with integral impulse condition. Adv. Differ. Equ. 2020, 2020, 434. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Lazreg, J.E.; Zhou, Y. A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability. Chaos Solitons Fractals 2017, 102, 47–71. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Furati, K.M.; Kassim, M.D. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 64, 1616–1626. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Applied Mathematics Comput. 2015, 266, 850–859. [Google Scholar] [CrossRef]
- Tunç, C.; Golmankhaneh, A.K.; Branch, U. On stability of a class of second alpha-order fractal differential equations. AIMS Math. 2020, 5, 2126–2142. [Google Scholar] [CrossRef]
- Bohner, M.; Tunç, O.; Tunç, C. Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Comput. Appl. Math. 2021, 40, 214. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Hale, J.K.; Lunel, S.M. Introduction to Functional Differential Equations; Springer Science and Business Media: New York, NY, USA, 2013. [Google Scholar]
- Brunt, B.; Zaidi, A.A.; Lynch, T. Cell division and the pantograph equation. ESAIM Proc. Surv. 2018, 62, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, S.; Ordokhani, Y.; Dehghan, M. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4815–4830. [Google Scholar] [CrossRef]
- Bahsi, M.; Cevik, M.; Sezer, M. Orthoexponential polynomial solutions of delay pantograph differential equations with residual error estimation. Appl. Math. Comput. 2015, 271, 11–21. [Google Scholar]
- Ockendon, J.R.; Taylor, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R Soc. Lond. Ser. A 1971, 322, 447–468. [Google Scholar]
- Ajello, W.G.; Freedman, H.I.; Wu, J. A model of stage structured population growth with density depended time delay. SIAM J. Appl. Math. 1992, 52, 855–869. [Google Scholar]
- Weiner, G.J. Activation of NK Cell Responses and Immunotherapy of Cancer. Curr. Cancer Res. 2014, 12, 57–66. [Google Scholar]
- Langley, J.K. A certain functional-differential equation. J. Math. Anal. Appl. 2000, 244, 564–567. [Google Scholar] [CrossRef]
- Liu, M.Z. Asymptotic behavior of functional-differential equations with proportional time delays. Eur. J. Appl. Math. 1996, 7, 11–30. [Google Scholar] [CrossRef]
- Li, D.; Liu, M.Z. Runge-Kutta methods for the multi-pantograph delay equation. Appl. Math. Comput. 2005, 163, 383–395. [Google Scholar] [CrossRef]
- Derfel, G.A.; Iserles, A. The pantograph equation in the complex plane. J. Math. Anal. Appl. 1997, 213, 117–132. [Google Scholar] [CrossRef]
- Iserles, A. Exact and discretized stability of the pantograph equation. Appl. Numer. Math. 1997, 24, 295–308. [Google Scholar] [CrossRef]
- Liu, M.Z.; Li, D. Properties of analytic solution and numerical solution of multi-pantograph equation. Appl. Math. Comput. 2004, 155, 853–871. [Google Scholar] [CrossRef]
- Sezer, M.; Yalcinbas, S.; Sahin, N. Approximate solution of multi-pantograph equation with variable coefficients. J. Comput. Appl. Math. 2008, 214, 406–416. [Google Scholar] [CrossRef]
- Balachandran, K.; Kiruthika, S.; Trujillo, J. Existence of solutions of nonlinear fractional pantograph equations. Acta Math. Sci. 2013, 33, 712–720. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. New concept in calculus: Piecewise differential and integral operators. Chaos Solitons Fractals 2021, 145, 110638. [Google Scholar] [CrossRef]
- Bashir, A.; Sivasundaram, S. Some existence results for fractional integro-differential equations with nonlocal conditions. Commun. Appl. Anal. 2008, 12, 107–112. [Google Scholar]
- Shah, K.; Abdeljawad, T.; Abdalla, B.; Abualrub, M.S. Utilizing fixed point approach to investigate piecewise equations with non-singular type derivative. AIMS Math. 2022, 7, 14614–14630. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Usp. Mat. Nauk. 1955, 10, 123–127. [Google Scholar]
- Gronwall, T.H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 2019, 2, 292–296. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. Diff. Equ. Appl. 2019, 11, 87–106. [Google Scholar]
- Caputo, M.; Fabrizio, M. New definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivative with non-local and non-singular kernel. Therm. Sci. 2016, 20, 757–763. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdo, M.S.; Shammakh, W.; Alzumi, H.Z.; Alghamd, N.; Albalwi, M.D. Nonlinear Piecewise Caputo Fractional Pantograph System with Respect to Another Function. Fractal Fract. 2023, 7, 162. https://doi.org/10.3390/fractalfract7020162
Abdo MS, Shammakh W, Alzumi HZ, Alghamd N, Albalwi MD. Nonlinear Piecewise Caputo Fractional Pantograph System with Respect to Another Function. Fractal and Fractional. 2023; 7(2):162. https://doi.org/10.3390/fractalfract7020162
Chicago/Turabian StyleAbdo, Mohammed S., Wafa Shammakh, Hadeel Z. Alzumi, Najla Alghamd, and M. Daher Albalwi. 2023. "Nonlinear Piecewise Caputo Fractional Pantograph System with Respect to Another Function" Fractal and Fractional 7, no. 2: 162. https://doi.org/10.3390/fractalfract7020162
APA StyleAbdo, M. S., Shammakh, W., Alzumi, H. Z., Alghamd, N., & Albalwi, M. D. (2023). Nonlinear Piecewise Caputo Fractional Pantograph System with Respect to Another Function. Fractal and Fractional, 7(2), 162. https://doi.org/10.3390/fractalfract7020162