On Ostrowski–Mercer’s Type Fractional Inequalities for Convex Functions and Applications
Abstract
:1. Introduction
2. Main Results
3. Applications
3.1. Special Means
3.2. -Digamma Function
4. Modified Bessel Function
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. Some Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA Res. Rep. Coll 2010, 13, 6. [Google Scholar]
- Cerone, P.; Dragomir, S.S. Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstr. Math. 2004, 37, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. On the Ostrowski’s integral inequality for mappings with bounded variation and applications. Math. Ineq. Appl. 2001, 4, 59–66. [Google Scholar] [CrossRef]
- Set, E.; Sarikaya, M.Z.; Özdemir, M.E. Some Ostrowski’s Type Inequalities for Functions whose Second Derivatives are s-Convex in the Second Sense and Applications. arXiv 2010, arXiv:1006.2488. [Google Scholar]
- Pachpatte, B.G. On an inequality of Ostrowski type in three independent variables. J. Math. Anal. Appl. 2000, 249, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Özdemir, M.E.; Sarikaya, M.Z. New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications. arXiv 2010, arXiv:1005.0702. [Google Scholar]
- Sahoo, S.K.; Latif, M.A.; Alsalami, O.M.; Treanţă, S.; Sudsutad, W.; Kongson, J. Hermite-Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions. Fractal Fract. 2022, 6, 506. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Internat. J. Comput. Intel. Syst. 2022, 15, 8. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Kodamasingh, B.; Shaikh, A.A.; Botmart, T.; El-Shorbagy, M.A. Some Novel Fractional Integral Inequalities over a New Class of Generalized Convex Function. Fractal Fract. 2022, 6, 42. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo-Fabrizio Operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Kavurmaci-Önalan, H.; Avci-Ardic, M. New Inequalities of Ostrowski Type for Mappings whose Derivatives are (α,m)-Convex via Fractional Integrals. Thai J. Math. 2018, 16, 723–731. [Google Scholar]
- Chun, L.; Qi, F. Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex. J. Inequal. Appl. 2013, 2013, 451. [Google Scholar] [CrossRef] [Green Version]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis. Mathematics and Its Applications (East European Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993; Volume 61. [Google Scholar]
- Mehmood, N.; Butt, S.I.; Pečarić, D.; Pečarić, J. Generalizations of cyclic refinements of Jensen’s inequality by Lidstone’s polynomial with applications in Information Theory. J. Math. Inequal. 2019, 14, 249–271. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Bakula, M.K.; Pečarić, D.; Pečarić, J. Jensen-Grüss inequality and its applications for the Zipf-Mandelbrot law. Math. Methods Appl. Scis. 2021, 44, 1664–1673. [Google Scholar] [CrossRef]
- Khan, S.; Adil Khan, M.; Butt, S.I.; Chu, Y.M. A new bound for the Jensen gap pertaining twice differentiable functions with applications. Adv. Differ. Equ. 2020, 2020, 333. [Google Scholar] [CrossRef]
- Mercer, A.M. A variant of Jensens inequality. J. Ineq. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Matkovic, A.; Pečarić, J. A variant of Jensens inequality of Mercers type for operators with applications. Linear Algebra Appl. 2006, 418, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Niezgoda, M. A generalization of Mercer’s result on convex functions. Nonlinear Anal. Theory Methods Appl. 2009, 71, 2771–2779. [Google Scholar] [CrossRef]
- Kian, M. Operator Jensen inequality for superquadratic functions. Linear Algebra Appl. 2014, 456, 82–87. [Google Scholar] [CrossRef]
- Kian, M.; Moslehian, M.S. Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar]
- Zhao, J.; Butt, S.I.; Nasir, J.; Wang, Z.; Tlili, I. Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives. J. Func. Spaces 2020, 2020, 7061549. [Google Scholar] [CrossRef]
- Moradi, H.R.; Furuichi, S. Improvement and generalization of some Jensen-Mercer-type inequalities. arXiv 2019, arXiv:1905.01768. [Google Scholar] [CrossRef]
- Ekinci, A.; Özdemir, M.E. Some New Integral Inequalities via Riemann Liouville Integral Operators. Appl. Comput. Math. 2019, 3, 288–295. [Google Scholar]
- Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Chen, H.; Katugampola, U.N. Hermite—Hadamard and Hermite—Hadamard—Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Tomar, M.; Maden, S.; Set, E. (k,s)-Riemann–Liouville fractional integral inequalities for continuous random variables. Arab. J. Math. 2017, 6, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Das, T.; Ghosh, U.; Sarkar, S.; Das, S. Higher-dimensional fractional time-independent Schrödinger equation via fractional derivative with generalised pseudoharmonic potential. Pramana 2019, 93, 76. [Google Scholar] [CrossRef]
- Al-Raeei, M. Applying fractional quantum mechanics to systems with electrical screening effects. Chaos Solitons Fractals 2021, 150, 111209. [Google Scholar] [CrossRef]
- El-Dib, Y.O. Modified multiple scale technique for the stability of the fractional delayed nonlinear oscillator. Pramana 2020, 94, 56. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Podlubni, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Butt, S.I.; Umar, M.; Rashid, S.; Akdemir, A.O.; Chu, Y.M. New Hermite Jensen Mercer type inequalities via k-fractional integrals. Adv. Differ. Equations 2020, 2020, 635. [Google Scholar] [CrossRef]
- Butt, S.I.; Nadeem, M.; Qaisar, S.; Akdemir, A.O.; Abdeljawad, T. Hermite Jensen Mercer type inequalities for conformable integrals and related results. Adv. Differ. Equ. 2020, 2020, 501. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Kodamasingh, B.; Kashuri, A.; Aydi, H.; Ameer, E. Ostrowski type inequalities pertaining to Atangana-Baleanu fractional operators and applications containing special functions. J. Inequal. Appl. 2022, 2022, 162. [Google Scholar] [CrossRef]
- Botmart, T.; Sahoo, S.K.; Kodamasingh, B.; Latif, M.A.; Jarad, F.; Kashuri, A. Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Math. 2023, 8, 5616–5638. [Google Scholar] [CrossRef]
- İşcan, İ. Ostrowski type inequalities for harmonically s-convex functions. Konuralp J. Math. 2015, 3, 63–74. [Google Scholar]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Liu, W. Ostrowski type fractional integral inequalities for MT-convex functions. Miskolc Math. Notes 2015, 16, 249–256. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
- Sarikaya, M.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals. Proc. Am. Math. Soc. 2017, 145, 1527–1538. [Google Scholar] [CrossRef]
- Gürbüz, M.; Taşdan, Y.; Set, E. Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Math. 2020, 5, 42–53. [Google Scholar] [CrossRef]
- Ahmad, H.; Tariq, M.; Sahoo, S.K.; Askar, S.; Abouelregal, A.E.; Khedher, K.M. Refinements of Ostrowski Type Integral Inequalities Involving Atangana-Baleanu Fractional Integral Operator. Symmetry 2021, 13, 2059. [Google Scholar] [CrossRef]
- Sial, I.B.; Patanarapeelert, N.; Ali, M.A.; Budak, H.; Sitthiwirattham, T. On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions. Axioms 2022, 11, 132. [Google Scholar] [CrossRef]
- Ali, M.A.; Asjad, M.I.; Budak, H.; Faridi, W.A. On Ostrowski–Mercer inequalities for differentiable harmonically convex functions with applications. Math. Methods Appl. Sci. 2021. [Google Scholar] [CrossRef]
- Jain, S.; Mehrez, K.; Baleanu, D.; Agarwal, P. Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications. Mathematics 2019, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, S.K.; Kashuri, A.; Aljuaid, M.; Mishra, S.; De La Sen, M. On Ostrowski–Mercer’s Type Fractional Inequalities for Convex Functions and Applications. Fractal Fract. 2023, 7, 215. https://doi.org/10.3390/fractalfract7030215
Sahoo SK, Kashuri A, Aljuaid M, Mishra S, De La Sen M. On Ostrowski–Mercer’s Type Fractional Inequalities for Convex Functions and Applications. Fractal and Fractional. 2023; 7(3):215. https://doi.org/10.3390/fractalfract7030215
Chicago/Turabian StyleSahoo, Soubhagya Kumar, Artion Kashuri, Munirah Aljuaid, Soumyarani Mishra, and Manuel De La Sen. 2023. "On Ostrowski–Mercer’s Type Fractional Inequalities for Convex Functions and Applications" Fractal and Fractional 7, no. 3: 215. https://doi.org/10.3390/fractalfract7030215
APA StyleSahoo, S. K., Kashuri, A., Aljuaid, M., Mishra, S., & De La Sen, M. (2023). On Ostrowski–Mercer’s Type Fractional Inequalities for Convex Functions and Applications. Fractal and Fractional, 7(3), 215. https://doi.org/10.3390/fractalfract7030215