Photothermal Response for the Thermoelastic Bending Effect Considering Dissipating Effects by Means of Fractional Dual-Phase-Lag Theory
Abstract
:1. Introduction
2. Theory
The Thermoelastic Bending Effect in Photoacoustic Signal
3. Results and Discussion
3.1. Temperature Distribution
- The subdiffusive Generalized Continuous Equation of the First Kind (GCE-I) has been shown to reduce the resonant oscillations of the hyperbolic model and diminish the temperature gradient inside the sample. The attenuation of oscillations in the GCE-I model for photothermal excitations has been previously observed [23,45,57], as shown by the red curve in Figure 2a, given that the GCE-I model returns to the hyperbolic equation when . Furthermore, a decrease in the value of leads to a reduction in the temperature variation, which in turn affects the amplitude of the TE effect;
- The second Phase-Lag term functions as a damping factor for the resonant oscillations in the hyperbolic model but has the consequence of increasing the temperature gradient. By setting in Jeffrey’s Equation (3), the resulting Equation (5) can be interpreted as a DPL extension of the GCE-I model. As illustrated in Figure 2c,d, the DPL parameters and lead to a reduction in the resonant oscillations while simultaneously increasing the temperature in the region of incidence radiation (). The degree of attenuation is determined by the fractional order , while the relaxation time is responsible for the variation in a temperature gradient. This is closer to real-world scenarios, as resonant oscillations are typically absent, but the TE effect induced by the temperature gradient is present and can be measured;
- In the scenario where the fractional order, , and relaxation time, , are close to the values of and , respectively, the damping of resonant oscillations is maximized, which is the strongest damping situation. Additionally, the temperature gradient exhibits a weaker behavior than that predicted by the classical and GCE-I models.
3.2. Photoacoustic Signal
- The GCE-I makes the amplitude tend the classical behavior to high frequencies increases the first resonant peak. On the other hand, the phase delay exhibits a sharp decrease around the first resonant peak, which shifts to higher frequencies as decreases;
- For low , the PA signal is lower than the classical result, even for higher frequencies. This situation can explain the strongest dissipating phenomena;
- The influence of the fractional derivative photothermal model FDPL-GCE-I on the amplitude of the photoacoustic (PA) signal is more prominent at lower frequencies. In contrast, its impact on the phase can be detected across the entire frequency range. Specifically, the phase delay is more sensitive to anomalous effects, especially when detecting equipment works at high frequencies.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PA | Photoacoustic |
TE | Thermoelastic Bending |
GCE-I | Generalized Cattaneo Equation type I |
DPL | Dual-Phase-Lag |
FDPL | Fractional Dual-Phase-Lag |
FDPL-GCE-I | Fractional Dual-Phase-Lag obtained from Jefrey’s Equation |
interpreted as a dual-phase-lag extension of GCE-I |
References
- Rousset, G.; Lepoutre, F.; Bertrand, L. Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals. J. Appl. Phys. 1983, 54, 2383–2391. [Google Scholar] [CrossRef]
- Perondi, L.F.; Miranda, L.C.M. Minimal-volume photoacoustic cell measurement of thermal diffusivity: Effect of the thermoelastic sample bending. J. Appl. Phys. 1987, 62, 2955–2959. [Google Scholar] [CrossRef] [Green Version]
- Todorović, D.M. Plasmaelastic and thermoelastic waves in semiconductors. J. Phys. IV Fr. 2005, 125, 551–555. [Google Scholar] [CrossRef]
- Aleksić, S.; Markushev, D.; Markushev, D.; Pantic, D.; Lukic, D.; Popovic, M.; Galovic, S. Photoacoustic Analysis of Illuminated Si-TiO2 Sample Bending Along the Heat-Flow Axes. Silicon 2022, 14, 9853–9861. [Google Scholar] [CrossRef]
- Somer, A.; Gonçalves, A.; Moreno, T.V.; Cruz, G.K.; Baesso, M.L.; Astrath, N.G.C.; Novatski, A. Photoacoustic signal with two heating sources: Theoretical predictions and experimental results for the Open Photoacoustic Cell technique. Meas. Sci. Technol. 2020, 31, 075202. [Google Scholar] [CrossRef]
- Somer, A.; Camilotti, F.; Costa, G.; Bonardi, C.; Novatski, A.; Andrade, A.; Kozlowski, V., Jr.; Cruz, G. The thermoelastic bending and thermal diffusion processes influence on photoacoustic signal generation using open photoacoustic cell technique. J. Appl. Phys. 2013, 114, 063503. [Google Scholar] [CrossRef]
- Somer, A.; Camilotti, F.; Costa, G.; Jurelo, A.; Assmann, A.; De Souza, G.; Cintho, O.; Bonardi, C.; Novatski, A.; Cruz, G. Effects of thermal oxidation on the effective thermal diffusivity of titanium alloys. J. Phys. D Appl. Phys. 2014, 47, 385306. [Google Scholar] [CrossRef]
- Markushev, D.K.; Markushev, D.D.; Aleksić, S.M.; Pantić, D.S.; Galović, S.P.; Todorović, D.M.; Ordonez-Miranda, J. Experimental photoacoustic observation of the photogenerated excess carrier influence on the thermoelastic response of n-type silicon. J. Appl. Phys. 2020, 128, 095103. [Google Scholar] [CrossRef]
- Jovančić, N.; Markushev, D.; Markushev, D.; Aleksić, S.; Pantic, D.; Korte, D.; Franko, M. Thermal and Elastic Characterization of Nanostructured Fe2O3 Polymorphs and TiO2-Coated Fe2O3 Using Open Photoacoustic Cell. Int. J. Thermophys. 2020, 41, 90. [Google Scholar] [CrossRef]
- Astrath, F.B.G.; Astrath, N.; Baesso, M.; Bento, A.; Moraes, J.C.S.; Santos, A. Open photoacoustic cell for thermal diffusivity measurements of a fast hardening cement used in dental restoring. J. Appl. Phys. 2012, 111, 014701. [Google Scholar] [CrossRef] [Green Version]
- Souza, S.; Trichês, D.; Poffo, C.; De Lima, J.; Grandi, T.; De Biasi, R. Structural, thermal, optical, and photoacoustic study of nanocrystalline Bi2Te3 produced by mechanical alloying. J. Appl. Phys. 2011, 109, 013512. [Google Scholar] [CrossRef]
- Markushev, D.D.; Ordonez-Miranda, J.; Rabasović, M.D.; Chirtoc, M.; Todorović, D.M.; Bialkowski, S.E.; Korte, D.; Franko, M. Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements. Eur. Phys. J. Plus 2017, 132, 33. [Google Scholar] [CrossRef]
- Todorovic, D.; Rabasovic, M.; Markushev, D.; Jovic, V.; Radulovic, K.; Sarajlic, M. Photoacoustic Elastic Bending Method: Characterization of Thin Films on Silicon Membranes. Int. J. Thermophys. 2015, 36, 1016–1028. [Google Scholar] [CrossRef]
- Nesic, M.; Popovic, M.; Djordjevic, K.; Miletić, V.; Jordovic Pavlovic, M.; Markushev, D.; Galovic, S. Development and comparison of the techniques for solving the inverse problem in photoacoustic characterization of semiconductors. Opt. Quantum Electron. 2021, 53, 381. [Google Scholar] [CrossRef]
- Djordjevic, K.; Galovic, S.; Jordovic Pavlovic, M.; Nesic, M.; Popovic, M.; Cojbasic, Z.; Markushev, D. Photoacoustic optical semiconductor characterization based on machine learning and reverse-back procedure. Opt. Quantum Electron. 2020, 52, 247. [Google Scholar] [CrossRef]
- Nesic, M.; Popovic, M.; Rabasovic, M.; Milicevic, D.; Suljovrujic, E.; Markushev, D.; Stojanovic, Z. Thermal Diffusivity of High-Density Polyethylene Samples of Different Crystallinity Evaluated by Indirect Transmission Photoacoustics. Int. J. Thermophys. 2017, 39, 24. [Google Scholar] [CrossRef]
- Herrmann, K.; Pech-May, N.; Retsch, M. Photoacoustic thermal characterization of low thermal diffusivity thin films. Photoacoustics 2021, 22, 100246. [Google Scholar] [CrossRef]
- Nesic, M.; Popovic, M.; Galovic, S.; Djordjevic, K.; Jordovic Pavlovic, M.; Miletić, V.; Markushev, D. Estimation of linear expansion coefficient and thermal diffusivity by photoacoustic numerical self-consistent procedure. J. Appl. Phys. 2022, 131, 105104. [Google Scholar] [CrossRef]
- Markushev, D.; Markushev, D.; Aleksić, S.; Pantic, D.; Galovic, S.; Lukic, D.; Ordonez-Miranda, J. Enhancement of the thermoelastic component of the photoacoustic signal of silicon membranes coated with a thin TiO2 film. J. Appl. Phys. 2022, 131, 085105. [Google Scholar] [CrossRef]
- Djordjevic, K.; Milicevic, D.; Galovic, S.; Suljovrujic, E.; Jacimovski, S.; Furundzic, D.; Popovic, M. Photothermal Response of Polymeric Materials Including Complex Heat Capacity. Int. J. Thermophys. 2022, 43, 68. [Google Scholar] [CrossRef]
- Galović, S.; Kostoski, D. Photothermal wave propagation in media with thermal memory. J. Appl. Phys. 2003, 93, 3063–3070. [Google Scholar] [CrossRef]
- Popovic, M.N.; Nesic, M.V.; Zivanov, M.; Markushev, D.D.; Galovic, S.P. Photoacoustic response of a transmission photoacoustic configuration for two-layer samples with thermal memory. Opt. Quantum Electron. 2018, 50, 330. [Google Scholar] [CrossRef]
- Popovic, M.; Markushev, D.; Nesic, M.; Jordovic Pavlovic, M.; Galovic, S. Optically induced temperature variations in a two-layer volume absorber including thermal memory effects. J. Appl. Phys. 2021, 129, 015104. [Google Scholar] [CrossRef]
- Youssef, H.M.; Al-Lehaibi, E.A. Fractional order generalized thermoelastic half-space subjected to ramp-type heating. Mech. Res. Commun. 2010, 37, 448–452. [Google Scholar] [CrossRef]
- Song, Y.Q.; Bai, J.T.; Ren, Z.Y. Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 2012, 223, 1545–1557. [Google Scholar] [CrossRef]
- Hobiny, A.; Abbas, I. Fractional Order GN Model on Photo-Thermal Interaction in a Semiconductor Plane. Silicon 2019, 12, 1957–1964. [Google Scholar] [CrossRef]
- Mondal, S.; Sur, A. Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Waves Random Complex Media 2021, 31, 1835–1858. [Google Scholar] [CrossRef]
- Ignaczak, J.; Ostoja-Starzewski, M. Thermoelasticity with Finite Wave Speeds; Oxford Mathematical Monographs; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Ezzat, M.A.; El-Karamany, A.S.; Fayik, M.A. Fractional Ultrafast Laser–Induced Thermo-Elastic Behavior In Metal Films. J. Therm. Stress. 2012, 35, 637–651. [Google Scholar] [CrossRef]
- Ezzat, M.A.; El-Karamany, A.S.; El-Bary, A.A.; Fayik, M.A. Fractional calculus in one-dimensional isotropic thermo-viscoelasticity. Comptes Rendus Mécanique 2013, 341, 553–566. [Google Scholar] [CrossRef]
- Alaimo, G.; Piccolo, V.; Chiappini, A.; Ferrari, M.; Zonta, D.; Deseri, L.; Zingales, M. Fractional-Order Theory of Thermoelasticicty. I: Generalization of the Fourier Equation. J. Eng. Mech. 2018, 144, 04017164. [Google Scholar] [CrossRef]
- Block, A.; Liebel, M.; Yu, R.; Spector, M.; Sivan, Y.; García de Abajo, F.J.; van Hulst, N.F. Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Sci. Adv. 2019, 5, eaav8965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, Y.R.; Shirazi-HD, M.; Vermeersch, B.; Mohammed, A.M.S.; Shao, J.; Pernot, G.; Bahk, J.H.; Manfra, M.J.; Shakouri, A. Quasi-ballistic thermal transport in Al0.1Ga0.9N thin film semiconductors. Appl. Phys. Lett. 2016, 109, 243107. [Google Scholar] [CrossRef] [Green Version]
- Mozafarifard, M.; Toghraie, D. Time-fractional subdiffusion model for thin metal films under femtosecond laser pulses based on Caputo fractional derivative to examine anomalous diffusion process. Int. J. Heat Mass Transf. 2020, 153, 119592. [Google Scholar] [CrossRef]
- Lotfy, K.; El-Bary, A.A.; Tantawi, R.S. Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory. Eur. Phys. J. Plus 2019, 134, 280. [Google Scholar] [CrossRef]
- Yasein, M.; Lotfy, K.; Mabrouk, N.; El-Bary, A.A.; Hassan, W. Response of Thermo- Electro-Magneto Semiconductor Elastic Medium to Photothermal Excitation Process with Thomson Influence. Silicon 2020, 12, 2789–2798. [Google Scholar] [CrossRef]
- Wellershoff, S.S.; Hohlfeld, J.; Güdde, J.; Matthias, E. The role of electron–phonon coupling in femtosecond laser damage of metals. Silicon 1999, 69, S99–S107. [Google Scholar]
- Nikbakht, M. Radiative heat transfer in fractal structures. Phys. Rev. B 2017, 96, 125436. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.Y.; Jiang, X.Y. Time fractional dual-phase-lag heat conduction equation. Chin. Phys. B 2015, 24, 034401. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Qi, H. Fractional dual-phase-lag heat conduction model for laser pulse heating. In Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 7833–7837. [Google Scholar]
- Somer, A.; Galovic, S.; Lenzi, E.; Novatski, A.; Djordjevic, K. Temperature profile and thermal piston component of photoacoustic response calculated by the fractional dual-phase-lag heat conduction theory. Int. J. Heat Mass Transf. 2023, 203, 123801. [Google Scholar] [CrossRef]
- Pękalski, A.; Sznajd-Weron, K. Anomalous Diffusion: From Basics to Applications; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Klafter, J.; Blumen, A.; Shlesinger, M.F. Stochastic pathway to anomalous diffusion. Phys. Rev. A 1987, 35, 3081. [Google Scholar] [CrossRef]
- Hobiny, A.; Alzahrani, F.; Abbas, I. Analytical estimation of temperature in living tissues using the tpl bioheat model with experimental verification. Mathematics 2020, 8, 1188. [Google Scholar] [CrossRef]
- Somer, A.; Novatski, A.; Lenzi, E.K. Theoretical predictions for photoacoustic signal: Fractionary thermal diffusion with modulated light absorption source. Eur. Phys. J. Plus 2019, 134, 18. [Google Scholar] [CrossRef]
- Somer, A.; Novatski, A.; Carlos Serbena, F.; Kaminski Lenzi, E. Fractional GCEs behaviors merged: Prediction to the photoacoustic signal obtained with subdiffusive and superdiffusive operators. J. Appl. Phys. 2020, 128, 075107. [Google Scholar] [CrossRef]
- Somer, A.; Novatski, A.; Serbena, F.C.; Lenzi, E.K. Interplay between super and subdiffusive behaviors in photothermal phenomena. Int. J. Therm. Sci. 2021, 159, 106539. [Google Scholar] [CrossRef]
- Awad, E.; Sandev, T.; Metzler, R.; Chechkin, A. From continuous-time random walks to the fractional Jeffreys equation: Solution and properties. Int. J. Heat Mass Transf. 2021, 181, 121839. [Google Scholar] [CrossRef]
- Somer, A.; Novatski, A.; da Silva, L.R.; Lenzi, M.; Novatski, A.; Lenzi, E. Fractional Dual-Phase-Lag Heat Conduction with Periodic Heating and Photothermal Response. Thermal Sci. 2023. accepted for publication. [Google Scholar]
- Lenzi, E.K.; Mendes, R.S.; Fa, K.S.; Moraes, L.S.; da Silva, L.R.; Lucena, L.S. Nonlinear fractional diffusion equation: Exact results. J. Math. Phys. 2005, 46, 083506. [Google Scholar] [CrossRef]
- Evangelista, L.R.; Lenzi, E.K. An Introduction to Anomalous Diffusion and Relaxation; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Evangelista, L.R.; Lenzi, E.K. Fractional Diffusion Equations and Anomalous Diffusion; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Compte, A.; Metzler, R. The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math. Gen. 1997, 30, 7277–7289. [Google Scholar] [CrossRef]
- Cattaneo, C. Sulla Conduzione del Calore. Atti Sem. Mat. Fis. Univ. Modena 1948, 3, 83–101. [Google Scholar]
- Nesic, M.; Galovic, S.; Soskic, Z.; Popovic, M.; Todorovic, D.M. Photothermal Thermoelastic Bending for Media with Thermal Memory. Int. J. Thermophys. 2012, 33, 2203–2209. [Google Scholar] [CrossRef]
- Rosencwaig, A.; Gersho, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 1976, 47, 64–69. [Google Scholar] [CrossRef]
- Somer, A.; Popovic, M.N.; da Cruz, G.K.; Novatski, A.; Lenzi, E.K.; Galovic, S.P. Anomalous Thermal Diffusion in Two-Layer System: The Temperature Profile and Photoacoustic Signal for Rear Light Incidence. Int. J. Therm. Sci. 2022, 179, 107661. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somer, A.; Novatski, A.; Lenzi, M.K.; da Silva, L.R.; Lenzi, E.K. Photothermal Response for the Thermoelastic Bending Effect Considering Dissipating Effects by Means of Fractional Dual-Phase-Lag Theory. Fractal Fract. 2023, 7, 276. https://doi.org/10.3390/fractalfract7030276
Somer A, Novatski A, Lenzi MK, da Silva LR, Lenzi EK. Photothermal Response for the Thermoelastic Bending Effect Considering Dissipating Effects by Means of Fractional Dual-Phase-Lag Theory. Fractal and Fractional. 2023; 7(3):276. https://doi.org/10.3390/fractalfract7030276
Chicago/Turabian StyleSomer, Aloisi, Andressa Novatski, Marcelo Kaminski Lenzi, Luciano Rodrigues da Silva, and Ervin Kaminski Lenzi. 2023. "Photothermal Response for the Thermoelastic Bending Effect Considering Dissipating Effects by Means of Fractional Dual-Phase-Lag Theory" Fractal and Fractional 7, no. 3: 276. https://doi.org/10.3390/fractalfract7030276
APA StyleSomer, A., Novatski, A., Lenzi, M. K., da Silva, L. R., & Lenzi, E. K. (2023). Photothermal Response for the Thermoelastic Bending Effect Considering Dissipating Effects by Means of Fractional Dual-Phase-Lag Theory. Fractal and Fractional, 7(3), 276. https://doi.org/10.3390/fractalfract7030276