Some Estimates of k-Fractional Integrals for Various Kinds of Exponentially Convex Functions
Abstract
:1. Introduction
- (i)
- (ii)
2. Main Results
- (i)
- (ii)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kreyszig, E. Introductory Functional Analysis with Applications; John Wiley and Sons: New York, NY, USA, 1978. [Google Scholar]
- Zhu, K. Operator Theory in Function Spaces; Marcel Dekker Inc.: New York, NY, USA, 1990. [Google Scholar]
- Breaz, D.; Yildiz, Ç.; Cotîrlă, L.; Rahman, G. New Hadamard Type Inequalities for Modified h-Convex Functions. Fractal Fract. 2023, 7, 216. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătaș, A.; Saeed, T. Generalized Fractional Integral Inequalities for p-Convex Fuzzy Interval-Valued Mappings. Fractal Fract. 2022, 6, 324. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Kashuri, A.; Aljuaid, M.; Mishra, S.; Sen, M.D.L. On Ostrowski–Mercer’s Type Fractional Inequalities for Convex Functions and Applications. Fractal Fract. 2023, 7, 215. [Google Scholar] [CrossRef]
- Lakhdari, A.; Saleh, W.; Meftah, B.; Iqbal, A. Corrected dual-Simpson-type inequalities for differentiable generalized convex functions on fractal set. Fractal Fract. 2022, 6, 710. [Google Scholar] [CrossRef]
- ZhangZhang, Z.; Farid, G.; Mehmood, S.; Jung, C.-Y.; Yan, T. Generalized k-fractional Chebyshev-type inequalities via Mittag–Leffler Functions. Axioms 2022, 11, 82. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus; Integral and Differential Equation of Fractional Order; Springer: Wien, Ausria, 1997; pp. 223–276. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Function, Related Topics and Applications; Springer: Berlin, Germany, 2014; Volume 2. [Google Scholar]
- Arshad, M.; Choi, J.; Mubeen, S.; Nisar, K.S. A New Extension of Mittag–Leffler Function. Commun. Korean Math. Soc. 2018, 33, 549–560. [Google Scholar]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Matemticas 2007, 15, 179–192. [Google Scholar]
- Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Salim, T.O.; Faraj, A.W. A Generalization of Mittag–Leffler function and integral operator associated with integral calculus. J. Frac. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Shukla, A.K.; Prajapati, J.C. On a Generalization of Mittag–Leffler Function and Its Properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Farid, G.; Khan, K.A.; Waheed, A. Generalized fractional inequalities for quasi-convex functions. Adv. Differ. Equ. 2019, 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications: A Contemporary Approach; Springer Science & Business Media, Inc.: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Roberts, A.W.; Varberg, D.E. Convex Functions; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Anastassiou, G.A. Generalized fractional Hermite-Hadamard inequalities involving m-convexity and (s,m)-convexity. Ser. Math. Inform. 2013, 28, 107–126. [Google Scholar]
- Rashid, S.; Noor, M.A.; Noor, K.I. Fractional exponentially m-convex functions and inequalities. J. Anal. Appl. 2019, 17, 464–478. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Akdemir, A.O. Some new generalizations for exponentially s-convex functions and inequalities via fractional operators. Fractal Fract. 2019, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Varo<i>s</i>^anec, S. On h-convexity. J. Math. Anal. App. 2007, 326, 303–311. [Google Scholar]
- Rashid, S.; Noor, M.A.; Noor, K.I. Some generalize Riemann–Liouville fractional estimates involving functions having exponentially convexity property. Punjab. Univ. J. Math. 2019, 51, 1–15. [Google Scholar]
- Ozdemir, M.E.; Akdemir, A.O.; Set, E. On (h-m)-convexity and Hadamard-type inequalities. J. Math. Mech. 2016, 8, 51–58. [Google Scholar]
- Rashid, S.; Noor, M.A.; Noor, K.I. Some new estimates for exponentially (h-m)-convex functions via extended generalized fractional integral operators. Korean J. Math. 2019, 27, 843–860. [Google Scholar]
- Mihesan, V.G. A Generalization of the Convexity. In Proceedings of the Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania; 1993. [Google Scholar]
- Farid, G.; Guran, L.; Qiang, X.; Chu, Y.M. Study on fractional Fejer-Hadamard type inequalities associated with generalized exponentially convexity. UPB Sci. Bull. 2021, 83, 1223–7027. [Google Scholar]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing generalized Mittag- Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Rahman, G.; Baleanu, D.; Qurashi, M.A.; Purohit, S.D. The extended Mittag–Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
- Farid, G. Bounds of fractional integral operators containing Mittag–Leffler function. UPB Sci. Bull. 2019, 81, 133–142. [Google Scholar]
- Farid, G. Bounds of Riemann–Liouville fractional integral operators. Comput. Meth. Diff. Equ. 2021, 9, 637–648. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Anwar, M.; Farid, G.; Khan, H.S. Some Estimates of k-Fractional Integrals for Various Kinds of Exponentially Convex Functions. Fractal Fract. 2023, 7, 297. https://doi.org/10.3390/fractalfract7040297
Liu Y, Anwar M, Farid G, Khan HS. Some Estimates of k-Fractional Integrals for Various Kinds of Exponentially Convex Functions. Fractal and Fractional. 2023; 7(4):297. https://doi.org/10.3390/fractalfract7040297
Chicago/Turabian StyleLiu, Yonghong, Matloob Anwar, Ghulam Farid, and Hala Safdar Khan. 2023. "Some Estimates of k-Fractional Integrals for Various Kinds of Exponentially Convex Functions" Fractal and Fractional 7, no. 4: 297. https://doi.org/10.3390/fractalfract7040297
APA StyleLiu, Y., Anwar, M., Farid, G., & Khan, H. S. (2023). Some Estimates of k-Fractional Integrals for Various Kinds of Exponentially Convex Functions. Fractal and Fractional, 7(4), 297. https://doi.org/10.3390/fractalfract7040297