Fractional p-Laplacian Equations with Sandwich Pairs
Abstract
:1. Introduction and Motivation
2. Mathematical Background: Preliminaries
3. Main Results
Special Cases
4. Conclusions and Future Work
- (1)
- Taking the problem (1), we can work with the -Laplacian that has a more complex nonlinearity, which raises some essential difficulties; for example, it is inhomogeneous.
- (2)
- An interesting issue that can also be worked on is to discuss the problem (1) with a double phase.
- (3)
- Finally, a possible discussion of the problem (1) with the Kirchhoff problem would be interesting.
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 207, p. 200. [Google Scholar]
- Vijayakumar, V.; Malik, M.; Shukla, A. Results on the Approximate Controllability of Hilfer Type fractional Semilinear Control Systems. Qual. Theory Dyn. Syst. 2023, 22, 58. [Google Scholar] [CrossRef]
- Ma, Y.K.; Dineshkumar, C.; Vijayakumar, V.; Udhayakumar, R.; Shukla, A.; Nisar, K.S. Hilfer fractional neutral stochastic Sobolev-type evolution hemivariational inequality: Existence and controllability. Ain Shams Eng. J. 2023, 14, 102126. [Google Scholar] [CrossRef]
- Kavitha, K.; Vijayakumar, V. Optimal control for Hilfer fractional neutral integrodifferential evolution equations with infinite delay. Optim. Control. Appl. Meth. 2023, 44, 130–147. [Google Scholar] [CrossRef]
- Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Shukla, A.; Nisar, K.S. New discussion regarding approximate controllability for Sobolev-type fractional stochastic hemivariational inequalities of order r ∈ (1,2). Commun. Nonlinear Sci. Numer. Simul. 2023, 116, 106891. [Google Scholar] [CrossRef]
- Kavitha, K.; Vijayakumar, V.; Udhayakumar, R. Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness. Chaos Solitons Fractals 2020, 139, 110035. [Google Scholar] [CrossRef]
- Perera, K.; Squassina, M. Existence results for double-phase problems via Morse theory. Commun. Cont. Math. 2018, 20, 1750023. [Google Scholar] [CrossRef]
- Liu, W.; Dai, G. Existence and multiplicity results for double phase problem. J. Diff. Equ. 2018, 265, 4311–4334. [Google Scholar] [CrossRef]
- Cencelj, M.; Rădulescu, V.D.; Repovš, D.D. Double phase problems with variable growth. Nonlinear Anal. 2018, 177, 270–287. [Google Scholar] [CrossRef]
- Liu, W.; Dai, G. Multiplicity results for double phase problems in RN. J. Math. Phys. 2020, 61, 091508. [Google Scholar] [CrossRef]
- Arrieta, J.M.; Carvalho, A.N.; Pereira, M.C.; Silva, R.P. Semilinear parabolic problems in thin domains with a highly oscillatory boundary. Nonlinear Anal. Theory Meth. Appl. 2011, 74, 5111–5132. [Google Scholar] [CrossRef]
- Arrieta, J.M.; Pereira, M.C. Homogenization in a thin domain with an oscillatory boundary. J. Math. Pures Appl. 2011, 96, 29–57. [Google Scholar] [CrossRef]
- Elsken, T. Continuity of attractors for net-shaped thin domain. Topol. Meth. Nonlinear Anal. 2005, 26, 315–354. [Google Scholar] [CrossRef]
- Hale, J.K.; Raugel, G. Reaction-diffusion equations on thin domains. J. Math. Pures Apl. 1992, 9, 33–95. [Google Scholar]
- Pazanin, I.; Suarez-Grau, F.J. Effects of rough boundary on the heat transfer in a thin-film flow. Comptes Rendus Mec. 2013, 341, 646–652. [Google Scholar] [CrossRef]
- Pereira, M.C.; Silva, R.P. Rates of Convergence for a Homogenization Problem in Highly Oscillating Thin Domains. Proc. Dyn. Sys. Appl. 2012, 6, 337–340. [Google Scholar]
- Pereira, M.C.; Silva, R.P. Error estimatives for a Neumann problem in highly oscillating thin domain. Disc. Conti. Dyn. Sys. Ser. A 2013, 33, 803–817. [Google Scholar] [CrossRef]
- Sousa, J.; Vanterler, d.C.; Zuo, J.; O’Regan, D. The Nehari manifold for a ψ-Hilfer fractional p-Laplacian. Appl. Anal. 2022, 101, 5076–5106. [Google Scholar] [CrossRef]
- Sousa, J.; Vanterler, d.C. Existence and uniqueness of solutions for the fractional differential equations with p-Laplacian in J. Appl. Anal. Comput. 2022, 12, 622–661. [Google Scholar]
- Sousa, J.; Vanterler, d.C.; Ledesma, C.T.; Pigossi, M.; Zuo, J. Nehari Manifold for Weighted Singular Fractional p-Laplace Equations. Bull. Braz. Math. Soc. 2022, 53, 1245–1275. [Google Scholar] [CrossRef]
- da C. Sousa, J.V.; Nyamoradi, N.; Lamine, M. Nehari manifold and fractional Dirichlet boundary value problem. Anal. Math. Phys. 2022, 12, 143. [Google Scholar] [CrossRef]
- Ledesma, C.E.T.; Bonilla, M.C.M. Fractional Sobolev space with Riemann–Liouville fractional derivative and application to a fractional concave–convex problem. Adv. Oper. Theory 2021, 6, 65. [Google Scholar] [CrossRef]
- Ledesma, C.E.T.; Nyamoradi, N. (κ,ψ)-Hilfer variational problem. J. Ellip. Parabol. Equ. 2022, 8, 681–709. [Google Scholar] [CrossRef]
- Ledesma, C.E.T.; Nyamoradi, N. (k,ψ)-Hilfer impulsive variational problem. Rev. De La Real Acad. De Cienc. Exactas Físicas Y Nat. Ser. A. Matemáticas 2023, 117, 1–34. [Google Scholar]
- Ezati, R.; Nyamoradi, N. Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations. Math. Meth. Appl. Sci. 2021, 44, 12909–12920. [Google Scholar] [CrossRef]
- Ezati, R.; Nyamoradi, N. Existence and multiplicity of solutions to a ψ-Hilfer fractional p-Laplacian equations. Asian-Eur. J. Math. 2022, 16, 2350045. [Google Scholar] [CrossRef]
- Schechter, M. Sandwich pairs. In Proceedings of the Conference on Differential and Difference Equations and Applications; Hindawi Publishing Corporation: New York, NY, USA, 2006; pp. 999–1007. [Google Scholar]
- Perera, K.; Schechter, M. Sandwich pairs in p-Laplacian problems. Topol. Meth. Nonlinear Anal. 2007, 29, 29–34. [Google Scholar]
- Perera, K.; Schechter, M. Flows critical points. NoDEA Nonlinear Diff. Equ. Appl. 2008, 15, 495–509. [Google Scholar]
- Chen, L.; Schechter, M.; Zou, W. Sign-changing critical points via Sandwich Pair theorems. Nonlinear Anal. Theory Methods Appl. 2013, 93, 109–121. [Google Scholar] [CrossRef]
- Silva, E.A.B. Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal. 1991, 16, 455–477. [Google Scholar] [CrossRef]
- Schechter, M. A generalization of the saddle point method with applications. Ann. Polon. Math. 1992, 57, 269–281. [Google Scholar] [CrossRef]
- Schechter, M. Applications of sandwich pairs. Nonlinear Anal. Theory, Methods Appl. 2009, 71, 234–242. [Google Scholar] [CrossRef]
- Schechter, M. Variant sandwich pairs. Math. Nach. 2010, 283, 272–288. [Google Scholar] [CrossRef]
- Schechter, M. Custom sandwich pairs. J. Diff. Equ. 2009, 246, 3398–3415. [Google Scholar] [CrossRef]
- Schechter, M. Sandwich pairs in critical point theory. Trans. Am. Math. Soc. 2008, 360, 2811–2823. [Google Scholar] [CrossRef]
- Perera, K.; Schechter, M. Sandwich pairs for p-Laplacian systems. J. Math. Anal. Appl. 2009, 358, 485–490. [Google Scholar] [CrossRef]
- Sousa, J.; Vanterler, d.C.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Schechter, M. Linking Methods in Critical Point Theory; Birkhauser Boston Inc.: Boston, MA, USA, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, J.V.d.C. Fractional p-Laplacian Equations with Sandwich Pairs. Fractal Fract. 2023, 7, 419. https://doi.org/10.3390/fractalfract7060419
Sousa JVdC. Fractional p-Laplacian Equations with Sandwich Pairs. Fractal and Fractional. 2023; 7(6):419. https://doi.org/10.3390/fractalfract7060419
Chicago/Turabian StyleSousa, Jose Vanterler da C. 2023. "Fractional p-Laplacian Equations with Sandwich Pairs" Fractal and Fractional 7, no. 6: 419. https://doi.org/10.3390/fractalfract7060419
APA StyleSousa, J. V. d. C. (2023). Fractional p-Laplacian Equations with Sandwich Pairs. Fractal and Fractional, 7(6), 419. https://doi.org/10.3390/fractalfract7060419