Further Research for Lagrangian Mechanics within Generalized Fractional Operators
Abstract
:1. Introduction
2. Preliminaries
3. Noether Theorem within the Generalized Fractional Operator of
3.1. Euler–Lagrange Equation and Transversality Condition
3.2. Conserved Quantity
3.3. Perturbation to Noether Symmetry and Adiabatic Invariant
3.4. Examples
4. Noether Theorem within the Generalized Fractional Operator
4.1. Euler–Lagrange Equation and Terminal Condition
4.2. Noether Symmetry and Conserved Quantity
4.3. Perturbation to Noether Symmetry and Adiabatic Invariant
4.4. An Example
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Integrals and Derivatives—Theory and Applications; John Wiley and Sons Inc.: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Wu, Q.; Huang, J.H. Fractional Order Calculus; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Yu, H. Unique continuation for fractional orders of elliptic equations. Ann. PDE 2017, 3, 16. [Google Scholar] [CrossRef]
- Muslih, S.I.; Agrawal, O.P.; Baleanu, D. A fractional Dirac equation and its solution. J. Phys. A Math. Theor. 2010, 43, 055203. [Google Scholar] [CrossRef]
- Shaikh, A.S.; Nisar, K.S. Transmission dynamics of fractional order Typhoid fever model using Caputo-Fabrizio operator. Chaos Soliton. Fract. 2019, 128, 355–365. [Google Scholar] [CrossRef]
- Pishkoo, A.; Darus, M. Using fractal calculus to solve fractal Navier–Stokes equations, and simulation of laminar static mixing in COMSOL Multiphysics. Fractal Fract. 2021, 5, 16. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Pilipović, S. Zener model with general fractional calculus: Thermodynamical restrictions. Fractal Fract. 2022, 6, 617. [Google Scholar] [CrossRef]
- Lopes, A.M.; Chen, L.P. Fractional order systems and their applications. Fractal Fract. 2022, 6, 389. [Google Scholar] [CrossRef]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 3581–3592. [Google Scholar] [CrossRef]
- Agrawal, O.P. Formulation of Euler—Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef]
- Rabei, E.M.; Nawafleh, K.I.; Hijjawi, R.S.; Muslih, S.I.; Baleanu, D. The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 2007, 327, 891–897. [Google Scholar] [CrossRef]
- Zhou, S.; Fu, J.L.; Liu, Y.S. Lagrange equations of nonholonomic systems with fractional derivatives. Chin. Phys. B 2010, 19, 120301. [Google Scholar] [CrossRef]
- Baleanu, D.; Agrawal, O.P. Fractional Hamilton formalism within Caputo’s derivative. Czech. J. Phys. 2006, 56, 1087–1092. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Agrawal, O.P. Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 2007, 40, 6287–6303. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y. Fractional Pfaff-Birkhoff principle and Birkhoff’s equations in terms of Riesz fractional derivatives. Trans. Nanjing Univ. Aeronaut. Astronaut. 2014, 31, 63–69. [Google Scholar]
- Luo, S.K.; Xu, Y.L. Fractional Birkhoffian mechanics. Acta Mech. 2015, 226, 829–844. [Google Scholar] [CrossRef]
- Zhang, Y. Fractional differential equations of motion in terms of combined Riemann—Liouville derivatives. Chin. Phys. B 2012, 21, 084502. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 2011, 14, 523–537. [Google Scholar] [CrossRef]
- Klimek, M. Fractional sequential mechanics—Models with symmetric fractional derivative. Czech. J. Phys. 2001, 51, 1348–1354. [Google Scholar] [CrossRef]
- Cresson, J. Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 2007, 48, 033504. [Google Scholar] [CrossRef]
- Herzallah, M.A.E.; Baleanu, D. Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 2009, 58, 385–391. [Google Scholar] [CrossRef]
- Zine, H.; Torres, D.F.M. A stochastic fractional calculus with applicatons to variational principles. Fractal Fract. 2020, 4, 38. [Google Scholar] [CrossRef]
- Almeida, R.; Martins, N. A generalization of a fractional variational problem with dependence on the boundaries and a real parameter. Fractal Fract. 2021, 5, 24. [Google Scholar] [CrossRef]
- Almeida, R. Minimization problems for functionals depending on generalized proportional fractional derivatives. Fractal Fract. 2022, 6, 356. [Google Scholar] [CrossRef]
- Agrawal, O.P. Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 2010, 59, 1852–1864. [Google Scholar] [CrossRef]
- Mei, F.X. Analytical Mechanics; Beijing Institute of Technology Press: Beijing, China, 2013. [Google Scholar]
- Mei, F.X.; Wu, H.B. Dynamics of Constrained Mechanical Systems; Beijing Institute of Technology Press: Beijing, China, 2009. [Google Scholar]
- Mei, F.X.; Wu, H.B.; Zhang, Y.F. Symmetries and conserved quantities of constrained mechanical systems. Int. J. Dyn. Control 2014, 2, 285–303. [Google Scholar] [CrossRef]
- Noether, A.E. Invariante variationsprobleme. Nachr. Akad. Wiss. Gött. Math.-Phys. 1918, KI, 235–258. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Kosmann, S.Y. The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century; Springer: New York, NY, USA, 2010. [Google Scholar]
- Mansfield, E.; Rojo-Echeburua, A.; Hydon, P.; Peng, L. Moving frames and Noether’s finite difference conservation laws I. Trans. Math. Appl. 2019, 3, tnz004. [Google Scholar] [CrossRef]
- Peng, L. Symmetries, conservation laws, and Noether’s theorem for differential-difference equations. Stud. Appl. Math. 2017, 139, 457–502. [Google Scholar] [CrossRef]
- Peng, L.; Hydon, P. Transformations, symmetries and Noether theorems for differential-difference equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2022, 478, 20210944. [Google Scholar] [CrossRef]
- Frederico, G.S.F.; Torres, D.F.M. A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 2007, 334, 834–846. [Google Scholar] [CrossRef]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Noether’s theorem for fractional variational problems of variable order. Cent. Eur. J. Phys. 2013, 11, 691–701. [Google Scholar] [CrossRef]
- Zhang, H.B.; Chen, H.B. Noether’s theorem with classical and generalized fractional derivative operators. Int. J. Non-Linear Mech. 2018, 107, 34–41. [Google Scholar] [CrossRef]
- Khorshidi, M.; Nadjafikhah, M.; Jafari, H. Fractional derivative generalization of Noether’s theorem. Open Math. 2015, 13, 940–947. [Google Scholar] [CrossRef]
- Frederico, G.S.F.; Lazo, M.J. Fractional Noether’s theorem with classical and Caputo derivatives: Constants of motion for non-conservative systems. Nonlinear Dyn. 2016, 85, 839–851. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Konjik, S.; Pilipović, S.; Simić, S. Variational problems with fractional derivatives: Invariance conditions and Noether’s theorem. Nonlinear Anal. 2009, 71, 1504–1517. [Google Scholar] [CrossRef]
- Cresson, J.; Szafrańska, A. About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical jost method of proof. Fract. Calc. Appl. Anal. 2019, 22, 871–898. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Tunc, C. Analogues to Lie method and Noether’s theorem in fractal calculus. Fractal Fract. 2019, 3, 25. [Google Scholar] [CrossRef]
- Jin, S.X.; Zhang, Y. Noether theorem for non-conservative systems with time delay in phase space based on fractional model. Nonlinear Dyn. 2015, 82, 663–676. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y. Noether’s theorem for fractional Herglotz variational principle in phase space. Chaos Solitions Fractals 2019, 119, 50–54. [Google Scholar] [CrossRef]
- Zhou, S.; Fu, H.; Fu, J.L. Symmetry theories of Hamiltonian systems with fractional derivatives. Sci. China Phys. Mech. Astron. 2011, 54, 1847–1853. [Google Scholar] [CrossRef]
- Song, C.J.; Cheng, Y. Noether symmetry method for Hamiltonian mechanics involving generalized operators. Adv. Math. Phys. 2021, 2021, 1959643. [Google Scholar] [CrossRef]
- Song, C.J. Conserved quantities for constrained Hamiltonian system within combined fractional derivatives. Fractal Fract. 2022, 6, 683. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, X.H. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 2015, 81, 469–480. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Commun. Nonlinear Sci. Numer. Simul. 2016, 36, 81–97. [Google Scholar] [CrossRef]
- Song, C.J.; Shen, S.L. Noether symmetry method for Birkhoffian systems in terms of generalized fractional operators. Theor. Appl. Mech. Lett. 2021, 11, 100298. [Google Scholar] [CrossRef]
- Jia, Q.L.; Wu, H.B.; Mei, F.X. Noether symmetries and conserved quantities for fractional forced Birkhoffian systems. J. Math. Anal. Appl. 2016, 442, 782–795. [Google Scholar] [CrossRef]
- Burgers, J.M. Die adiabatischen invarianten bedingt periodischer systems. Ann. Phys. 1917, 357, 195–202. [Google Scholar] [CrossRef]
- Chen, X.W.; Li, Y.M. Perturbation to symmetries and adiabatic invariants of a type of nonholonomic singular system. Chin. Phys. 2003, 12, 1349–1353. [Google Scholar]
- Wang, P. Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dyn. 2012, 68, 53–62. [Google Scholar] [CrossRef]
- Jiang, W.A.; Li, L.; Li, Z.J.; Luo, S.K. Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems. Nonlinear Dyn. 2012, 67, 1075–1081. [Google Scholar] [CrossRef]
- Xia, L.L.; Li, Y.C. Perturbation to symmetries and Hojman adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. Chin. Phys. 2007, 16, 1516–1520. [Google Scholar]
- Ding, N.; Fang, J.H.; Wang, P. Perturbation and adiabatic invariants of Mei symmetry for nonholonomic mechanical systems. Commun. Theor. Phys. 2007, 47, 594–596. [Google Scholar]
- Chen, J.; Zhang, Y. Perturbation to Noether symmetries and adiabatic invariants for disturbed Hamiltonian systems based on El-Nabulsi nonconservative dynamics model. Nonlinear Dyn. 2014, 77, 353–360. [Google Scholar] [CrossRef]
- Xu, X.X.; Zhang, Y. A new type of adiabatic invariants for disturbed Birkhoffian system of Herglotz type. Chin. J. Phys. 2020, 64, 278–286. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. Lie symmetries analysis and conservation laws for the fractional Calogero–Degasperis–Ibragimov–Shabat equation. Int. J. Geom. Methods Mod. 2018, 15, 1850110. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. The conservation laws with Lie symmetry analysis for time fractional integrable coupled KdV–mKdV system. Int. J. Non-Linear Mech. 2018, 98, 114–121. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. Invariant analysis with conservation laws for the time fractional Drinfeld–Sokolov–Satsuma–Hirota equations. Chaos Solitons Fractals 2017, 104, 725–733. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. Analysis of Lie symmetries with conservation laws for the (3+1) dimensional time-fractional mKdV–ZK equation in ion-acoustic waves. Nonlinear Dyn. 2017, 90, 1105–1113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C. Further Research for Lagrangian Mechanics within Generalized Fractional Operators. Fractal Fract. 2023, 7, 421. https://doi.org/10.3390/fractalfract7060421
Song C. Further Research for Lagrangian Mechanics within Generalized Fractional Operators. Fractal and Fractional. 2023; 7(6):421. https://doi.org/10.3390/fractalfract7060421
Chicago/Turabian StyleSong, Chuanjing. 2023. "Further Research for Lagrangian Mechanics within Generalized Fractional Operators" Fractal and Fractional 7, no. 6: 421. https://doi.org/10.3390/fractalfract7060421
APA StyleSong, C. (2023). Further Research for Lagrangian Mechanics within Generalized Fractional Operators. Fractal and Fractional, 7(6), 421. https://doi.org/10.3390/fractalfract7060421