Approximate Controllability of Fractional Stochastic Evolution Inclusions with Non-Local Conditions
Abstract
:1. Introduction
2. Preliminaries
- (i)
- For every is measurable;
- (ii)
- For almost all is u.s.c.;
- (iii)
- For each , ζ there exists such that
3. Main Results
- Set of Assumptions
4. Approximate Controllability Theorems
5. Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Academic Press: Amsterdam, The Netherlands; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 1999. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Abuasbeh, K.; Shafqat, R.; Niazi, A.U.K.; Awadalla, M. Local and Global Existence and Uniqueness of Solution for Time-Fractional Fuzzy Navier-Stokes Equations. Fractal Fract. 2022, 6, 330. [Google Scholar] [CrossRef]
- Pang, D.; Jiang, W.; Niazi, A.U.K.; Sheng, J. Existence and optimal controls for nonlocal fractional evolution equations of order (1, 2) in Banach spaces. Adv. Differ. Equ. 2021, 2021, 302. [Google Scholar] [CrossRef]
- Iqbal, N.; Niazi, A.U.K.; Khan, I.U.; Karaca, Y. Non-autonomous fractional evolution equations with non-instantaneous impulse conditions of order (1,2): A Cauchy problem. Fractals 2022, 30, 2250196. [Google Scholar] [CrossRef]
- Ghafli, A.A.; Shafqat, R.; Niazi, A.U.K.; Abuasbeh, K.; Awadalla, M. Topological Structure of Solution Sets of Fractional Control Delay Problem. Fractal Fract. 2023, 7, 59. [Google Scholar] [CrossRef]
- Hernández, E.; O’Regan, D. On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 2013, 141, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Feckan, M. A general class of impulsive evolution equations. Topol. Meth. Nonlinear Anal. 2015, 46, 915–933. [Google Scholar] [CrossRef]
- Hernández, E.; Pierri, M.; O’Regan, D. On abstract differential equations with non instantaneous impulses. Topol. Meth. Nonlinear Anal. 2015, 46, 1067–1085. [Google Scholar]
- Chang, Y.K.; Nieto, J.J.; Li, W.S. Controllability of semilinear differential systems with non-local initial conditions in Banach spaces. J. Optim. Theor. Appl. 2009, 142, 267–273. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Al-Khateeb, A. Existence and Ulam–Hyers stability of coupled sequential fractional differential equations with integral boundary conditions. J. Inequalities Appl. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Houjun, L.; Lian, S.; Qizhi, H. Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solitons Fractals 2022, 156, 111860. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Li, X.; Eskandari, Z.; He, Q. Bifurcation analysis and complex dynamics of a Kopel triopoly model. J. Comput. Appl. Math. 2023, 426, 115089. [Google Scholar] [CrossRef]
- Muthukumar, P.; Rajivganthi, C. Approximate controllability of impulsive neutral stochastic functional differential system with state-dependent delay in Hilbert spaces. J. Control Theor. Appl. 2013, 11, 351–358. [Google Scholar] [CrossRef]
- Shu, X.B.; Lai, Y.; Chen, Y. The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal.-Theor. 2011, 74, 2003–2011. [Google Scholar] [CrossRef]
- Cui, J.; Yan, L. Existence result for fractional neutral stochastic integro-differential equations with infinite delay. J. Phys. A Math. Theor. 2011, 44, 335201. [Google Scholar] [CrossRef]
- Yan, Z. On a nonlocal problem for fractional integrodifferential inclusions in Banach spaces. Ann. Pol. Math. 2011, 101, 87–104. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H. Existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclusions with state-dependent delay. Electron. J. Differ. Equ. 2013, 2013, 1–21. [Google Scholar]
- Duan, S.; Hu, J.; Li, Y. Exact controllability of nonlinear stochastic impulsive evolution differential inclusions with infinite delay in Hilbert spaces. Int. J. Nonlinear Sci. Numer. Simul. 2011, 12, 23–33. [Google Scholar] [CrossRef]
- Balasubramaniam, P.; Vembarasan, V.; Senthilkumar, T. Approximate controllability of impulsive fractional integrodifferential systems with nonlocal conditions in Hilbert Space. Numer. Funct. Anal. Optim. 2014, 35, 177–197. [Google Scholar] [CrossRef]
- Yan, Z. Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces. IMA J. Math. Control I 2013, 30, 443–462. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Suganya, S. Approximate controllability of fractional neutral stochastic system with infinite delay. Rep. Math. Phys. 2012, 70, 291–311. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Ren, Y.; Anthoni, S.M. Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3498–3508. [Google Scholar] [CrossRef]
- Abuasbeh, K.; Shafqat, R.; Alsinai, A.; Awadalla, M. Analysis of Controllability of Fractional Functional Random Integroevolution Equations with Delay. Symmetry 2023, 15, 290. [Google Scholar] [CrossRef]
- Moumen, A.; Shafqat, R.; Alsinai, A.; Boulares, H.; Cancan, M.; Jeelani, M.B. Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability. AIMS Math. 2023, 8, 16094–16114. [Google Scholar] [CrossRef]
- Zhou, Y.; Vijayakumar, V.; Murugesu, R. Controllability for fractional evolution inclusions without compactness. Evol. Equ. Contr. Theory 2015, 4, 507–524. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; He, J.W. New results on controllability of fractional evolution systems with order. Evol. Equ. Contr. Theory 2021, 10, 491–509. [Google Scholar] [CrossRef]
- Deimling, K. Multivalued Differential Equations; De Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Hu, S.; Papageorgious, N.S. Handbook of Multivalued Analysis (Theory); Kluwer Academic: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Ren, Y.; Hu, L.; Sakthivel, R. Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay. J. Comput. Appl. Math. 2011, 235, 2603–2614. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Mathematics in sciences and engineering. In Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuasbeh, K.; Niazi, A.U.K.; Arshad, H.M.; Awadalla, M.; Trabelsi, S. Approximate Controllability of Fractional Stochastic Evolution Inclusions with Non-Local Conditions. Fractal Fract. 2023, 7, 462. https://doi.org/10.3390/fractalfract7060462
Abuasbeh K, Niazi AUK, Arshad HM, Awadalla M, Trabelsi S. Approximate Controllability of Fractional Stochastic Evolution Inclusions with Non-Local Conditions. Fractal and Fractional. 2023; 7(6):462. https://doi.org/10.3390/fractalfract7060462
Chicago/Turabian StyleAbuasbeh, Kinda, Azmat Ullah Khan Niazi, Hafiza Maria Arshad, Muath Awadalla, and Salma Trabelsi. 2023. "Approximate Controllability of Fractional Stochastic Evolution Inclusions with Non-Local Conditions" Fractal and Fractional 7, no. 6: 462. https://doi.org/10.3390/fractalfract7060462
APA StyleAbuasbeh, K., Niazi, A. U. K., Arshad, H. M., Awadalla, M., & Trabelsi, S. (2023). Approximate Controllability of Fractional Stochastic Evolution Inclusions with Non-Local Conditions. Fractal and Fractional, 7(6), 462. https://doi.org/10.3390/fractalfract7060462