An Operational Approach to Fractional Scale-Invariant Linear Systems
Abstract
:1. Introduction
2. Scale–Invariant Systems and Derivatives
2.1. The Mellin Convolution
- piecewise continuous,
- with bounded variation.
2.2. Scale-Derivatives
2.2.1. Stretching Derivatives: [16]
2.2.2. Shrinking Derivatives: [16]
- Hadamard–Liouville left derivative [16]
2.3. ARMA Type Systems
3. The Algebraic Framework for Solving DI-FARMA Systems
3.1. Sequence of Basic Functions for Fractional Scale Derivatives
Hadamard Right (Left) Derivative
3.2. The Framework
- is the neutral element of the Mellin convolution, ;
- the inverse element of is , .
- Derivative on a parameter
- Convolution of two different –log-exponential functions, but with the same parameter
- Convolution of two different parameters –log-exponential functionsFor ,
4. Impulse and Step Responses
4.1. The AR Case
4.2. The ARMA Case
5. Examples
- Operational method:By means of our operational method, the system can be rewritten asRemark 7.When , and .The Figure 1 and Figure 2 show the graphical representation of the solutions with and several values of α.For , the impulse response isRemark 8.When ,
- Mellin transform:
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Roberts, M.J. Signals and Systems: Analysis Using Transform Methods and Matlab; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Shmaliy, Y. Continuous-Time Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Braccini, C.; Gambardella, G. Form-invariant linear filtering: Theory and applications. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1612–1628. [Google Scholar] [CrossRef]
- Yazici, B.; Kashyap, R. A class of second-order stationary self-similar processes for 1/f phenomena. IEEE Trans. Signal Process. 1997, 45, 396–410. [Google Scholar] [CrossRef]
- Ortigueira, M.D. On the fractional linear scale invariant systems. IEEE Trans. Signal Process. 2010, 58, 6406–6410. [Google Scholar] [CrossRef]
- Nottale, L. The theory of scale relativity. Int. J. Mod. Phys. A 1992, 7, 4899–4936. [Google Scholar] [CrossRef] [Green Version]
- Narasimha, R.; Rao, R. Modeling variable-bit-rate video traffic using linear scale-invariant systems. In Wavelet and Independent Component Analysis Applications IX; SPIE: Bellingham, WA, USA, 2002; Volume 4738, pp. 79–89. [Google Scholar]
- Cresson, J. Scale relativity theory for one-dimensional non-differentiable manifolds. Chaos Solitons Fractals 2002, 14, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Cresson, J. Scale calculus and the Schrödinger equation. J. Math. Phys. 2003, 44, 4907–4938. [Google Scholar] [CrossRef] [Green Version]
- Khaluf, Y.; Ferrante, E.; Simoens, P.; Huepe, C. Scale invariance in natural and artificial collective systems: A review. J. R. Soc. Interface 2017, 14, 20170662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, R.; Zhao, W. Image modeling with linear scale-invariant systems. In Wavelet Applications VI; SPIE: Bellingham, WA, USA, 1999; Volume 3723, pp. 407–418. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 2000, 118, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2014. [Google Scholar]
- Hirschman, I.I.; Widder, D.V. The Convolution Transform; Courier Corporation: Honolulu, HI, USA, 2012. [Google Scholar]
- Poularikas, A. The Transforms and Applications Handbook; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Ortigueira, M.; Bohannan, G. Fractional Scale Calculus: Hadamard vs. Liouville. Fractal Fract. 2023, 7, 296. [Google Scholar] [CrossRef]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Ortigueira, M.; Valério, D. Fractional Signals and Systems; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- Ortigueira, M.D.; Machado, J.T. The 21st century systems: An updated vision of continuous-time fractional models. IEEE Circuits Syst. Mag. 2022, 22, 36–56. [Google Scholar] [CrossRef]
- Bengochea, G.; Ortigueira, M. An operational approach to solve fractional continuous–time linear systems. Int. J. Dyn. Control 2017, 5, 61–71. [Google Scholar] [CrossRef]
- Butzer, P.; Jansche, S. A direct approach to the Mellin transform. J. Fourier Anal. Appl. 1997, 3, 325–376. [Google Scholar] [CrossRef]
- Luchko, Y.; Kiryakova, V. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 2013, 16, 405–430. [Google Scholar] [CrossRef]
- Hadamard, J. Essai sur l’étude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Ortigueira, M.; Bengochea, G.; Machado, J. Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron. Math. Methods Appl. Sci. 2021, 44, 9191–9209. [Google Scholar] [CrossRef]
- Ortigueira, M.; Bengochea, G. Non-commensurate fractional linear systems: New results. J. Adv. Res. 2020, 25, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Appell, P. Sur une classe de polynômes. Ann. Sci. de l’École Norm. Supérieure. 1880, 9, 119–144. [Google Scholar] [CrossRef] [Green Version]
- Rota, G.; Taylor, B. The classical umbral calculus. SIAM J. Math. Anal. 1994, 25, 694–711. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Gel’fand, I.; Shilov, G. Generalized Functions; Academic Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Bengochea, G.; Verde-Star, L. Linear algebraic foundations of the operational calculi. Adv. Appl. Math. 2011, 47, 330–351. [Google Scholar] [CrossRef] [Green Version]
- Verde-Star, L. Inverses of generalized Vandermonde matrices. J. Math. Anal. Appl. 1988, 131, 341–353. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bengochea, G.; Ortigueira, M.D. An Operational Approach to Fractional Scale-Invariant Linear Systems. Fractal Fract. 2023, 7, 524. https://doi.org/10.3390/fractalfract7070524
Bengochea G, Ortigueira MD. An Operational Approach to Fractional Scale-Invariant Linear Systems. Fractal and Fractional. 2023; 7(7):524. https://doi.org/10.3390/fractalfract7070524
Chicago/Turabian StyleBengochea, Gabriel, and Manuel Duarte Ortigueira. 2023. "An Operational Approach to Fractional Scale-Invariant Linear Systems" Fractal and Fractional 7, no. 7: 524. https://doi.org/10.3390/fractalfract7070524
APA StyleBengochea, G., & Ortigueira, M. D. (2023). An Operational Approach to Fractional Scale-Invariant Linear Systems. Fractal and Fractional, 7(7), 524. https://doi.org/10.3390/fractalfract7070524