Stability of Time Series Models Based on Fractional-Order Weakening Buffer Operators
Abstract
:1. Introduction
2. Fractional-Order Weakening Buffer Operators
3. Perturbation Analysis of Model 1: The Fractional-Order Accumulate Discrete Grey Model in [22]
4. Perturbation Analysis of Model 2: The Model in [23]
5. Numerical Performance of Operator in Improving Model Stability
5.1. Numerical Study on Model
5.2. Numerical Study on Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Theorem 5
Appendix A.2. Proof of Theorem 6
Appendix A.3. Proof of Theorem 7
References
- Yu, L.; Wang, S.; Lai, K.K.; Nakamori, Y. Time series forecasting with multiple candidate models: Selecting or combining? J. Syst. Sci. Complex. 2005, 18, 1–18. [Google Scholar]
- Shahin, A.I.; Almotairi, S. A deep learning BiLSTM encoding-decoding model for COVID-19 pandemic spread forecasting. Fractal Fract. 2021, 5, 175. [Google Scholar] [CrossRef]
- Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liao, M.; Aouiti, C. New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays. Commun. Nonlinear Sci. 2023, 118, 107043. [Google Scholar] [CrossRef]
- Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liao, M.; Li, P.; Yao, L.; Qin, Q. Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks. Nonlinear Anal. Model. Control 2022, 27, 1030–1053. [Google Scholar] [CrossRef]
- Braverman, E.; Rodkina, A. On convergence of solutions to difference equations with additive perturbations. J. Differ. Equ. Appl. 2016, 22, 878–903. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Wang, D.; Guo, M. Existence and stability of stationary solutions of nonlinear difference equations under random perturbations. J. Differ. Equ. Appl. 2011, 17, 587–602. [Google Scholar] [CrossRef]
- Xu, C.; Mu, D.; Pan, Y.; Aouiti, C.; Yao, L. Exploring bifurcation in a fractional-order predator-prey system with mixed delays. J. Appl. Anal. Comput. 2023, 13, 1119–1136. [Google Scholar] [CrossRef]
- Ou, W.; Xu, C.; Cui, Q.; Liu, Z.; Pang, Y.; Farman, M.; Ahmad, S.; Zeb, A. Mathematical study on bifurcation dynamics and control mechanism of tri-neuron bidirectional associative memory neural networks including delay. Math. Methods Appl. Sci. 2023, 1–25. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, H. Modeling and application of fractional-order economic growth model with time delay. Fractal Fract. 2021, 5, 74. [Google Scholar] [CrossRef]
- Chandra, R.; Zhang, M. Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 2012, 86, 116–123. [Google Scholar] [CrossRef]
- Yager, R.R. Exponential smoothing with credibility weighted observations. Inf. Sci. 2013, 252, 96–105. [Google Scholar] [CrossRef]
- Rasmussen, R. On time series data and optimal parameters. Omega 2004, 32, 111–120. [Google Scholar] [CrossRef]
- Taylor, J.W.; Snyder, R.D. Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing. Omega 2012, 40, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.F.; Forrest, J.Y.L. Grey Systems: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Hu, Y.C. Grey prediction with residual modification using functional-link net and its application to energy demand forecasting. Kybernetes 2017, 46, 349–363. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, M.; Liu, S. Theory of grey systems: Capturing uncertainties of grey information. Kybernetes 2004, 33, 196–218. [Google Scholar] [CrossRef]
- Liu, S.F.; Yang, Y.J.; Forrest, J. Grey Data Analysis: Methods, Models and Applications; Springer: Singapore, 2016. [Google Scholar]
- Dang, Y.G.; Liu, S.F.; Liu, B.; Tang, X.W. Study on the buffer weakening operator. Chin. J. Manag. Sci. 2004, 12, 108–111. [Google Scholar]
- Xie, N.M.; Liu, S.F. A new applicative weakening buffer operator. Chin. J. Manag. Sci. 2003, 11, 46–48. [Google Scholar]
- Mao, S.; Gao, M.; Xiao, X.; Zhu, M. A novel fractional grey system model and its application. Appl. Math. Model. 2016, 40, 5063–5076. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Yang, Y.; Ma, L.; Liu, H. Multi-variable weakening buffer operator and its application. Inf. Sci. 2016, 339, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.F.; Liu, S.F.; Yao, L.G. Discrete grey model based on fractional order accumulate. Syst. Eng. Theor. Pract. 2014, 34, 1822–1827. [Google Scholar]
- Wu, L.F.; Liu, S.F.; Yao, L.G. Grey model with Caputo fractional order derivative. Syst. Eng. Theor. Pract. 2015, 35, 1311–1316. [Google Scholar]
- Ma, L.; Li, J.; Zhao, Y. Population forecast of China’s rural community based on CFANGBM and improved Aquila optimizer algorithm. Fractal Fract. 2021, 5, 190. [Google Scholar] [CrossRef]
- Tang, X.; Xie, N.; Hu, A. Forecasting annual foreign tourist arrivals to China by incorporating firefly algorithm into fractional non-homogenous discrete Grey model. Kybernetes 2022, 51, 676–693. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, H.; Yuan, X.; Chen, L.; Lei, X. Application of fractional order-based grey power model in water consumption prediction. Environ. Earth Sci. 2019, 78, 266. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Liu, S. Comparative analysis of properties of weakening buffer operators in time series prediction models. Commun. Nonlinear Sci. 2019, 68, 257–285. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Liu, S. A new method to mitigate data fluctuations for time series prediction. Appl. Math. Model. 2019, 65, 390–407. [Google Scholar] [CrossRef]
- Xiao, X.; Guo, H.; Mao, S. The modeling mechanism, extension and optimization of grey GM (1, 1) model. Appl. Math. Model. 2014, 38, 1896–1910. [Google Scholar] [CrossRef]
- Stewart, G.W.; Sun, J. Matrix Perturbation Theory; Academic Press: New York, NY, USA, 1990. [Google Scholar]
Modeling Period | Forecasting Period | ||||||
---|---|---|---|---|---|---|---|
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | |
Freight Ton-Kilometers | 1817.44 | 2398.13 | 3068.3 | 3644.14 | 4098.42 | 4707.5 | 5154.46 |
Freight Ton-Kilometers (2009) | 5236.45 * | 5238.69 | 5303.33 * | 5305.58 |
MAPE (%) | 1.59 * | 1.63 | 2.89 * | 2.93 |
Noise Position | Model Index * | Noise Amplitude | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
−10% | −8% | −6% | −4% | −2% | 2% | 4% | 6% | 8% | 10% | ||
2003 | A | 90.3 | 72.5 | 54.6 | 36.5 | 18.3 | 18.5 | 37.1 | 55.8 | 74.7 | 93.7 |
B | 87.2 | 70.1 | 52.7 | 35.3 | 17.7 | 17.8 | 35.8 | 54.0 | 72.2 | 90.6 | |
2004 | A | 110.7 | 90.2 | 68.9 | 46.8 | 23.8 | 24.7 | 50.2 | 76.5 | 103.7 | 131.8 |
B | 109.3 | 89.0 | 67.8 | 46.0 | 23.4 | 24.1 | 49.0 | 74.6 | 100.9 | 128.1 | |
2005 | A | 128.5 | 104.5 | 79.7 | 54.0 | 27.4 | 28.2 | 57.2 | 87.0 | 117.5 | 148.7 |
B | 127.0 | 103.0 | 78.3 | 52.9 | 26.8 | 27.5 | 55.6 | 84.3 | 113.6 | 143.6 | |
2006 | A | 113.6 | 92.9 | 71.1 | 48.4 | 24.6 | 25.5 | 51.8 | 78.9 | 106.7 | 135.1 |
B | 112.3 | 91.4 | 69.7 | 47.2 | 24.0 | 24.6 | 49.9 | 75.7 | 102.2 | 129.1 | |
2007 | A | 26.9 | 25.1 | 21.4 | 15.9 | 8.8 | 10.3 | 22.1 | 35.2 | 49.7 | 65.4 |
B | 33.5 | 29.9 | 24.6 | 17.9 | 9.6 | 10.9 | 23.1 | 36.5 | 51.0 | 66.6 | |
2008 | A | 198.0 | 158.4 | 118.8 | 79.2 | 39.6 | 39.6 | 79.2 | 118.8 | 158.4 | 198.0 |
B | 195.3 | 156.2 | 117.2 | 78.1 | 39.0 | 39.0 | 78.1 | 117.1 | 156.1 | 195.2 | |
2003 | C | 68.0 | 54.5 | 41.0 | 27.4 | 13.8 | 13.8 | 27.7 | 41.7 | 55.8 | 70.0 |
D | 64.8 | 52.0 | 39.1 | 26.2 | 13.1 | 13.2 | 26.5 | 39.8 | 53.2 | 66.7 | |
2004 | C | 115.8 | 93.8 | 71.2 | 48.0 | 24.3 | 24.8 | 50.2 | 76.2 | 102.7 | 129.8 |
D | 113.8 | 92.0 | 69.8 | 47.0 | 23.8 | 24.3 | 49.0 | 74.3 | 100.0 | 126.2 | |
2005 | C | 131.8 | 106.5 | 80.6 | 54.2 | 27.3 | 27.8 | 56.1 | 84.8 | 113.9 | 143.4 |
D | 129.7 | 104.5 | 79.0 | 53.1 | 26.7 | 27.1 | 54.6 | 82.4 | 110.6 | 139.1 | |
2006 | C | 110.8 | 89.8 | 68.2 | 46.0 | 23.3 | 23.8 | 48.0 | 72.7 | 97.9 | 123.5 |
D | 108.8 | 87.9 | 66.6 | 44.8 | 22.6 | 23.0 | 46.4 | 70.2 | 94.2 | 118.7 | |
2007 | C | 21.8 | 19.7 | 16.4 | 12.0 | 6.5 | 7.5 | 16.0 | 25.5 | 35.8 | 47.0 |
D | 27.4 | 23.9 | 19.3 | 13.8 | 7.4 | 8.2 | 17.3 | 27.2 | 37.8 | 49.2 | |
2008 | C | 175.3 | 140.2 | 105.2 | 70.1 | 35.1 | 35.1 | 70.1 | 105.2 | 140.2 | 175.3 |
D | 173.0 | 138.4 | 103.8 | 69.2 | 34.6 | 34.6 | 69.2 | 103.7 | 138.3 | 172.9 |
Model Parameter | Noise Position | Noise Amplitude | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
−10% | −8% | −6% | −4% | −2% | 2% | 4% | 6% | 8% | 10% | ||
2003 | 2.6628 | 2.1243 | 1.5884 | 1.0552 | 0.5247 | 0.5285 | 1.0513 | 1.5715 | 2.0892 | 2.6044 | |
2004 | 1.7216 | 1.5510 | 1.2953 | 0.9532 | 0.5230 | 0.6081 | 1.3126 | 2.1123 | 3.0087 | 4.0037 | |
2005 | 0.7736 | 0.9582 | 0.9699 | 0.8125 | 0.4891 | 0.6420 | 1.4430 | 2.3964 | 3.4982 | 4.7444 | |
2006 | 0.2291 | 0.6812 | 0.8729 | 0.8164 | 0.5230 | 0.7329 | 1.6756 | 2.8156 | 4.1435 | 5.6502 | |
2007 | 12.633 | 9.5106 | 6.7037 | 4.1937 | 1.9632 | 1.7191 | 3.1968 | 4.4470 | 5.4795 | 6.3032 | |
2008 | −3.4280 | −2.7186 | −2.0199 | −1.3334 | −0.6607 | −0.6377 | −1.2610 | −1.8653 | −2.4499 | −3.0140 | |
2003 | 2.8174 | 2.2531 | 1.6890 | 1.1250 | 0.5612 | 0.5660 | 1.1295 | 1.6928 | 2.2561 | 2.8194 | |
2004 | 2.7897 | 2.3443 | 1.8434 | 1.2866 | 0.6732 | 0.7262 | 1.5134 | 2.3598 | 3.2661 | 4.2327 | |
2005 | 1.5322 | 1.4354 | 1.2316 | 0.9234 | 0.5129 | 0.6054 | 1.3085 | 2.1042 | 2.9900 | 3.9635 | |
2006 | 0.6858 | 0.8631 | 0.8772 | 0.7345 | 0.4410 | 0.5755 | 1.2875 | 2.1284 | 3.0930 | 4.1764 | |
2007 | 12.560 | 9.6861 | 6.9995 | 4.4937 | 2.1617 | 2.0047 | 3.8503 | 5.5440 | 7.0902 | 8.4931 | |
2008 | −4.5834 | −3.6746 | −2.7613 | −1.8443 | −0.9244 | −0.9208 | −1.8446 | −2.7685 | −3.6919 | −4.6142 |
Modeling Period | Forecasting Period | |||||||
---|---|---|---|---|---|---|---|---|
2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | |
Actual value | 52333 | 53151 | 53168 | 54372 | 55516 | 55898 | 58600 | 60281 |
* | 52333 | 52953 | 53561 | 54176 | 54798 | 55428 | 56065 | 56709 |
* | 52333 | 53704 | 54858 | 55849 | 56704 | 57445 | 58087 | 58645 |
* | 52333 | 52627 | 53051 | 53666 | 54559 | 55855 | 57736 | 60464 |
52333 | 52701 | 53193 | 53854 | 54742 | 55934 | 57534 | 59684 |
Noise Position | Model Index * | Noise Amplitude (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−0.03 | −0.028 | −0.026 | −0.024 | −0.022 | −0.020 | −0.018 | −0.016 | −0.014 | −0.012 | −0.010 | −0.008 | −0.006 | −0.004 | −0.002 | ||
2000 | E | 1183 | 1104 | 1026 | 947 | 869 | 790 | 711 | 633 | 554 | 475 | 396 | 317 | 238 | 159 | 79 |
F | 962 | 898 | 834 | 771 | 707 | 643 | 579 | 515 | 450 | 386 | 322 | 258 | 193 | 129 | 65 | |
2001 | E | 680 | 635 | 591 | 546 | 501 | 456 | 411 | 366 | 320 | 275 | 229 | 184 | 138 | 92 | 46 |
F | 640 | 598 | 555 | 513 | 471 | 428 | 386 | 343 | 301 | 258 | 215 | 172 | 129 | 86 | 43 | |
2002 | E | 1424 | 1328 | 1232 | 1136 | 1041 | 945 | 850 | 755 | 660 | 565 | 471 | 376 | 282 | 188 | 94 |
F | 1076 | 1003 | 931 | 859 | 787 | 715 | 643 | 571 | 499 | 428 | 356 | 285 | 214 | 142 | 71 | |
2003 | E | 923 | 861 | 799 | 737 | 675 | 613 | 552 | 490 | 428 | 367 | 306 | 244 | 183 | 122 | 61 |
F | 757 | 706 | 655 | 604 | 554 | 503 | 452 | 402 | 351 | 301 | 251 | 201 | 150 | 100 | 50 | |
0.002 | 0.004 | 0.006 | 0.008 | 0.010 | 0.012 | 0.014 | 0.016 | 0.018 | 0.020 | 0.022 | 0.024 | 0.026 | 0.028 | 0.030 | ||
2000 | E | 79 | 159 | 238 | 318 | 397 | 477 | 557 | 637 | 716 | 796 | 876 | 956 | 1037 | 1117 | 1197 |
F | 65 | 129 | 194 | 259 | 323 | 388 | 453 | 518 | 583 | 648 | 713 | 778 | 844 | 909 | 974 | |
2001 | E | 46 | 93 | 139 | 186 | 232 | 279 | 326 | 373 | 420 | 468 | 515 | 563 | 610 | 658 | 706 |
F | 43 | 87 | 130 | 174 | 217 | 261 | 304 | 348 | 392 | 436 | 480 | 524 | 568 | 613 | 657 | |
2002 | E | 94 | 187 | 280 | 374 | 467 | 559 | 652 | 744 | 837 | 929 | 1021 | 1113 | 1204 | 1296 | 1387 |
F | 71 | 142 | 213 | 283 | 354 | 424 | 495 | 565 | 635 | 706 | 776 | 846 | 915 | 985 | 1055 | |
2003 | E | 61 | 122 | 183 | 243 | 304 | 364 | 425 | 485 | 546 | 606 | 666 | 726 | 786 | 846 | 906 |
F | 50 | 100 | 150 | 200 | 249 | 299 | 349 | 398 | 448 | 497 | 547 | 596 | 645 | 694 | 744 |
Noise Position | Noise Amplitude (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−0.03 | −0.028 | −0.026 | −0.024 | −0.022 | −0.020 | −0.018 | −0.016 | −0.014 | −0.012 | −0.010 | −0.008 | −0.006 | −0.004 | −0.002 | |
2000 | 26.90 | 36.95 | 46.95 | 56.91 | 66.82 | 76.69 | 86.51 | 96.28 | 106.00 | 115.66 | 125.28 | 134.84 | 144.35 | 153.80 | 163.20 |
2001 | 162.80 | 163.51 | 164.21 | 164.91 | 165.59 | 166.27 | 166.94 | 167.60 | 168.25 | 168.89 | 169.52 | 170.14 | 170.75 | 171.35 | 171.95 |
2002 | 143.20 | 144.05 | 145.33 | 148.15 | 150.84 | 153.40 | 155.83 | 158.14 | 160.33 | 162.40 | 164.36 | 166.21 | 167.94 | 169.58 | 171.10 |
2003 | −85.52 | −68.22 | −50.94 | −33.66 | −16.40 | 0.85 | 18.09 | 35.31 | 52.52 | 69.71 | 86.89 | 104.05 | 121.19 | 138.32 | 155.44 |
0.002 | 0.004 | 0.006 | 0.008 | 0.010 | 0.012 | 0.014 | 0.016 | 0.018 | 0.020 | 0.022 | 0.024 | 0.026 | 0.028 | 0.030 | |
2000 | 170.73 | 168.87 | 166.94 | 164.95 | 162.89 | 160.77 | 158.57 | 156.31 | 153.98 | 151.58 | 149.10 | 146.55 | 143.93 | 141.23 | 138.45 |
2001 | 162.74 | 152.94 | 143.13 | 133.30 | 123.47 | 113.62 | 103.76 | 93.89 | 84.01 | 74.12 | 64.21 | 54.29 | 44.37 | 34.42 | 24.47 |
2002 | 158.24 | 143.88 | 129.45 | 114.96 | 100.40 | 85.78 | 71.10 | 56.37 | 41.58 | 26.74 | 11.86 | −3.07 | −18.04 | −33.06 | −43.95 |
2003 | 172.27 | 171.98 | 171.66 | 171.31 | 170.94 | 170.53 | 170.10 | 169.64 | 169.15 | 168.63 | 168.08 | 167.50 | 166.89 | 166.24 | 165.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yang, Y.; Zhu, X. Stability of Time Series Models Based on Fractional-Order Weakening Buffer Operators. Fractal Fract. 2023, 7, 554. https://doi.org/10.3390/fractalfract7070554
Li C, Yang Y, Zhu X. Stability of Time Series Models Based on Fractional-Order Weakening Buffer Operators. Fractal and Fractional. 2023; 7(7):554. https://doi.org/10.3390/fractalfract7070554
Chicago/Turabian StyleLi, Chong, Yingjie Yang, and Xinping Zhu. 2023. "Stability of Time Series Models Based on Fractional-Order Weakening Buffer Operators" Fractal and Fractional 7, no. 7: 554. https://doi.org/10.3390/fractalfract7070554
APA StyleLi, C., Yang, Y., & Zhu, X. (2023). Stability of Time Series Models Based on Fractional-Order Weakening Buffer Operators. Fractal and Fractional, 7(7), 554. https://doi.org/10.3390/fractalfract7070554