Coefficient Inequalities of q-Bi-Univalent Mappings Associated with q-Hyperbolic Tangent Function
Abstract
:1. Introduction and Preliminaries
2. Coefficients Bound Estimates
3. The Fekete–Szegö Inequality and the Second Hankel Determinant
- Let . Since andThe maximum value of the function is achieved at the edges of the enclosed square X, which is clearly observable.Now, by using some techniques of differentiation on the function with respect to , we getThe function is a monotonically increasing function concerning and reaches its peak value when equals 1, as indicated by . Therefore, the following relationship holds:After employing the methods of differentiation to the function , the result is as follows:Because the derivative of D with respect to at is positive (), the function is monotonically increasing, and its maximum value is attained when . Consequently,Thus, for , we haveSince , we have
- Now, setting , for andHence, we have
- Given that c lies in the open interval between 0 and 2, our objective is to analyze the maximum value of the function . This analysis will consider the sign of some variables.The equation
- (a)
- Let for the interval . For this instance, since and , basic calculus dictates that the function cannot achieve a maximum within the boundaries of the square
- (b)
- Additionally, suppose there exists a value c in the interval (0, 2) such that . Under this condition, where , the function cannot attain a maximum within the square region .
As a result of these three instances, we write
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Alb Lupas, A.; Oros, G.I. Differential subordination and superordination results using fractional integral of confluent hypergeometric function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Oros, G.I. Study on new integral operators defined using confluent hypergeometric function. Adv. Differ. Equ. 2021, 2021, 342. [Google Scholar] [CrossRef]
- Khan, S.S.; Altinkaya, Ş.; Xin, Q.; Tchier, F.; Malik, S.N.; Khan, N. Faber Polynomial coefficient estimates for Janowski type bi-close-to-convex and bi-quasi-convex functions. Symmetry 2023, 15, 604. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-Calculus and their applications. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Adebesin, B.O.; Adeniyi, J.O.; Adimula, I.A.; Adebiyi, S.J.; Ikubanni, S.O.; Oladipo, O.A.; Olawepo, A.O. Pattern of ionization gradient, solar quiet magnetic element, and F2-layer bottomside thickness parameter at African equatorial location. Radio Sci. 2019, 54, 415–425. [Google Scholar] [CrossRef]
- Adebesin, B.O.; Pulkkinen, A.; Ngwira, C.M. The interplanetary and magnetospheric causes of extreme dB/dt at equatorial locations. Geophys. Res. Lett. 2016, 43, 11501–11509. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011, 2011, 107384. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000. [Google Scholar]
- Ibrahim, R.W. On holomorphic solutions for nonlinear singular fractional differential equations. Comput. Math. Appl. 2011, 62, 1084–1090. [Google Scholar] [CrossRef]
- Ibrahim, R.W. On solutions for fractional diffusion problems. Electron. J. Differ. Equ. 2010, 147, 1–11. [Google Scholar]
- Miller, S.S. Differential inequalities and Caratheodory functions. Bull. Am. Math. Soc. 1975, 81, 79–81. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Srivastava, H.M. Univalent Functions, Fractional Calculus, and Associated Generalized Hypergeometric Functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Saliu, A.; Jabeen, K.; Al-Shbeil, I.; Aloraini, N.; Malik, S.N. On q-Limaçon Functions. Symmetry 2022, 14, 2422. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowki Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Saliu, A.; Noor, K.I.; Hussain, S.; Darus, M. On Quantum Differential Subordination Related with Certain Family of Analytic Functions. J. Math. 2020, 2020, 6675732. [Google Scholar] [CrossRef]
- Saliu, A.; Oladejo, S.O. On Lemniscate of Bernoulli of q-Janowski type. J. Niger. Soc. Phys. Sci. 2022, 4, 961. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry 2021, 13, 1947. [Google Scholar] [CrossRef]
- Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
- Bieberbach, L. Uber die koeffizienten derjenigen potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitz. Ber. Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–22 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis. International Press: Cambridge, UK, 1994; Volume I, pp. 157–169. [Google Scholar]
- Swarup, C. Sharp coefficient bounds for a new subclass of q-starlike functions associated with q-analogue of the hyperbolic tangent function. Symmetry 2023, 15, 763. [Google Scholar] [CrossRef]
- Zhang, C.; Khan, B.; Shaba, T.G.; Ro, J.-S.; Araci, S.; Khan, M.G. Applications of q-Hermite polynomials to Subclasses of analytic and bi-Univalent Functions. Fractal Fract. 2022, 6, 420. [Google Scholar] [CrossRef]
- Hu, Q.; Shaba, T.G.; Younis, J.; Khan, B.; Mashwani, W.K.; Caglar, M. Applications of q-derivative operator to Subclasses of bi-Univalent Functions involving Gegenbauer polynomial. Appl. Math. Sci. Eng. 2022, 30, 501–520. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raducanu, F.M.; Zaprawa, D. Certain subclass of analytic functions defined by means of differential subordination. Filomat 2016, 30, 3743–3757. [Google Scholar] [CrossRef]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv 2018, arXiv:1801.09531. [Google Scholar] [CrossRef]
- Mahzoon, H.; Kargar, R. Further results for two certain subclasses of close-to-convex functions. Asian-Eur. J. Math. 2020, 14, 12. [Google Scholar] [CrossRef]
- Lasode, A.O.; Opoola, T.O. Some investigations on a class of analytic and univalent functions involving q-differentiation. Eur. J. Math. Anal. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Mustafa, N.; Korkmaz, S. On a subclass of the analytic and bi-univalent functions satisfying subordinate condition defined by q-derivative. Turk. J. Math. 2022, 46, 3095–3120. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Grenander, U.; Szego, G. Toeplitz form and their applications. In California Monographs in Mathematical Sciences; University California Press: Berkeley, CA, USA, 1958. [Google Scholar]
- Shaba, T.G.; Araci, S.; Adebesin, B.O.; Tchier, F.; Zainab, S.; Khan, B. Sharp Bounds of the Fekete–Szegö Problem and Second Hankel Determinant for Certain Bi-Univalent Functions Defined by a Novel q-Differential Operator Associated with q-Limaçon Domain. Fractal Fract. 2023, 7, 506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaba, T.G.; Araci, S.; Ro, J.-S.; Tchier, F.; Adebesin, B.O.; Zainab, S. Coefficient Inequalities of q-Bi-Univalent Mappings Associated with q-Hyperbolic Tangent Function. Fractal Fract. 2023, 7, 675. https://doi.org/10.3390/fractalfract7090675
Shaba TG, Araci S, Ro J-S, Tchier F, Adebesin BO, Zainab S. Coefficient Inequalities of q-Bi-Univalent Mappings Associated with q-Hyperbolic Tangent Function. Fractal and Fractional. 2023; 7(9):675. https://doi.org/10.3390/fractalfract7090675
Chicago/Turabian StyleShaba, Timilehin Gideon, Serkan Araci, Jong-Suk Ro, Fairouz Tchier, Babatunde Olufemi Adebesin, and Saira Zainab. 2023. "Coefficient Inequalities of q-Bi-Univalent Mappings Associated with q-Hyperbolic Tangent Function" Fractal and Fractional 7, no. 9: 675. https://doi.org/10.3390/fractalfract7090675
APA StyleShaba, T. G., Araci, S., Ro, J.-S., Tchier, F., Adebesin, B. O., & Zainab, S. (2023). Coefficient Inequalities of q-Bi-Univalent Mappings Associated with q-Hyperbolic Tangent Function. Fractal and Fractional, 7(9), 675. https://doi.org/10.3390/fractalfract7090675