Multistability Mechanisms for Improving the Performance of a Piezoelectric Energy Harvester with Geometric Nonlinearities
Abstract
:1. Introduction
2. Dynamical Model and Unperturbed Dynamics
2.1. Oscillatory System of the PEH and Its Nondimensional System
2.2. Static Bifurcations and Structural Parameters to Configure Triple Wells
3. Intra-Well Resonant Responses and the Corresponding Voltages
3.1. Resonant Solutions near the Trivial Center O(0, 0)
3.2. Resonant Solutions in the Vicinity of the Nontrivial Centers
4. Responses and Their Basins of Attraction
4.1. Coexisting Responses and Their BAs at ω = 0.9
4.2. Coexisting Responses and Their BAs at ω = 0.7
4.3. Coexisting Responses and Their BAs at ω = 0.5
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amin Karami, M.; Inman, D.J. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 2012, 100, 042901. [Google Scholar] [CrossRef]
- Yang, X.; LI, Z.; Wang, S.; Dou, Y.; Zhan, Y.; Zhao, R. Applicability of bridge vibration energy harvester based on nonlinear energy sink. J. Vib. Shock 2022, 41, 64–70. [Google Scholar]
- Bendine, K.; Hamdaoui, M.; Boukhoulda, B.F. Piezoelectric energy harvesting from a bridge subjected to time-dependent moving loads using finite elements. Arab. J. Sci. Eng. 2019, 44, 5743–5763. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Daqaq, M.F.; Masana, R.; Erturk, A.; Dane Quinn, D. On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion. Appl. Mech. Rev. 2014, 66, 040801. [Google Scholar] [CrossRef]
- Ferrari, M.; Ferrari, V.; Guizzetti, M.; Marioli, D.; Taroni, A. Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sens. Actuators A Phys. 2008, 142, 329–335. [Google Scholar] [CrossRef]
- Li, H.; Qin, W.; Lan, C.; Deng, W.; Zhou, Z. Dynamics and coherence resonance of tri-stable energy harvesting system. Smart. Mater. Struct. 2016, 25, 1530038. [Google Scholar]
- Zhou, Z.; Qin, W.; Yang, Y.; Zhu, P. Improving efficiency of energy harvesting by a novel penta-stable configuration. Sens. Actuators A Phys. 2017, 265, 297–305. [Google Scholar] [CrossRef]
- Zhou, Z.; Qin, W.; Zhu, P. Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sens. Actuators A Phys. 2016, 243, 151–158. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, J.; Lin, J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn. 2016, 86, 1599–1611. [Google Scholar] [CrossRef]
- Vocca, H.; Neri, I.; Travasso, F.; Gammaitoni, L. Kinetic energy harvesting with bistable oscillators. Appl. Energy 2012, 97, 771–776. [Google Scholar] [CrossRef]
- Litak, G.; Margielewicz, J.; Gąska, D.; Wolszczak, P.; Zhou, S. Multiple Solutions of the Tristable Energy Harvester. Energies 2021, 14, 1284. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Wang, W.; Feng, J. A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mech. Syst. Signal Process. 2018, 112, 305–318. [Google Scholar] [CrossRef]
- Fan, K.; Tan, Q.; Liu, H.; Zhang, Y.; Cai, M. Improved energy harvesting from low-frequency small vibrations through a monostable piezoelectric energy harvester. Mech. Syst. Signal Process. 2019, 117, 594–608. [Google Scholar] [CrossRef]
- Zhao, S.; Erturk, A. On the stochastic excitation of monostable and bistable electroelastic power generators: Relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 2013, 102, 103902. [Google Scholar] [CrossRef]
- Wang, G.; Liao, W.; Yang, B.; Wang, X.; Xu, W.; Li, X. Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier. Mech. Syst. Signal Process. 2018, 105, 427–446. [Google Scholar] [CrossRef]
- Kim, P.; Seok, J. Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester. Mech. Mach. Theory 2015, 94, 41–63. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, G.; Zhu, Q.; Li, G.; Zhou, Y.; Hou, L.; Jiang, Y. Bifurcations and nonlinear dynamics of asymmetric tri-stable piezoelectric vibration energy harvesters. Commun. Nonlinear Sci. 2023, 119, 107077. [Google Scholar] [CrossRef]
- Wang, G.; Zheng, Y.; Zhu, Q.; Liu, Z.; Zhou, S. Asymmetric tristable energy harvester with a compressible and rotatable magnet-spring oscillating system for energy harvesting enhancement. J. Sound Vib. 2023, 543, 117384. [Google Scholar] [CrossRef]
- Panyam, M.; Daqaq, M.F. Characterizing the effective bandwidth of tri-stable energy harvesters. J. Sound Vib. 2017, 386, 336–358. [Google Scholar] [CrossRef]
- Cao, Q.; Wiercigroch, M.; Pavlovskaia, E.E.; Grebogi, C.; Thompson, J.M. Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006, 74, 046218. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shang, H. Multistability and Jump in the Harmonically Excited SD Oscillator. Fractal Fract. 2023, 7, 314. [Google Scholar] [CrossRef]
- Ramlan, R.; Brennan, M.J.; Mace, B.R.; Kovacic, I. Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 2009, 59, 545–558. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, L. Snap-through piezoelectric energy harvesting. J. Sound Vib. 2014, 333, 4314–4325. [Google Scholar] [CrossRef]
- Foupouapouognigni, O.; Buckjohn, C.N.D.; Siewe, M.S.; Tchawoua, C. Hybrid electromagnetic and piezoelectric energy harvester with Gaussian white noise excitation. Phys. A Stat. Mech. Its Appl. 2018, 509, 346–360. [Google Scholar] [CrossRef]
- Younesian, D.; Alam, M.-R. Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl. Energy 2017, 197, 292–302. [Google Scholar] [CrossRef]
- Yang, T.; Cao, Q. Dynamics and performance evaluation of a novel tristable hybrid energy harvester for ultra-low level vibration resources. Int. J. Mech. Sci. 2019, 156, 123–136. [Google Scholar] [CrossRef]
- Yang, T.; Cao, Q. Dynamics and high-efficiency of a novel multi-stable energy harvesting system. Chaos Soliton. Fract. 2020, 131, 109516. [Google Scholar] [CrossRef]
- Cao, J.; Zhou, S.; Wang, W.; Lin, J. Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 2015, 106, 173905. [Google Scholar] [CrossRef]
- Kim, P.; Son, D.; Seok, J. Triple-well potential with a uniform depth: Advantageous aspects in designing a multi-stable energy harvester. Appl. Phys. Lett. 2016, 108, 243902. [Google Scholar] [CrossRef]
- Han, Y.; Cao, Q.; Chen, Y.; Wiercigroch, M. A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Sci. China Phys. Mech. 2012, 55, 1832–1843. [Google Scholar] [CrossRef]
- Dong, C.; Wang, J. Hidden and coexisting attractors in a novel 4d hyperchaotic system with no equilibrium point. Fractal Fract. 2022, 6, 306. [Google Scholar] [CrossRef]
- Guo, Z.; Wen, J.; Mou, J. Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors. Mathematics 2022, 11, 24. [Google Scholar] [CrossRef]
- Zhu, Y.; Shang, H. Global Dynamics of the Vibrating System of a Tristable Piezoelectric Energy Harvester. Mathematics 2022, 10, 2894. [Google Scholar] [CrossRef]
- Shang, H. Pull-in instability of a typical electrostatic MEMS resonator and its control by delayed feedback. Nonlinear Dyn. 2017, 90, 171–183. [Google Scholar] [CrossRef]
- Shang, H.; Xu, J. Delayed feedbacks to control the fractal erosion of safe basins in a parametrically excited system. Chaos Soliton. Fract. 2009, 41, 1880–1896. [Google Scholar] [CrossRef]
Parameter | Symbol |
---|---|
Equivalent mass of the proof mass (kg) | |
Equivalent damping of the mass (N.s/m) | |
Stiffness coefficient of the vertical spring (N/m) | |
Stiffness coefficient for each inclined spring (N/m) | |
Relative displacement of the oscillator (cm) | |
Displacement of the base (cm) | |
Vertical half distance between two pins (cm) | |
Horizontal distance between the rotation shifts (cm) | |
Time (s) | |
Original length of each inclined spring (cm) | |
Electro-mechanical coupling coefficient in relation to voltage (N/V) | |
Electro-mechanical coupling coefficient in relation to current (A.s/m) | |
Piezoelectric capacitance (F) | |
Equivalent resistive load () | |
Voltage at time t (V) | |
Excitation level (N) | F |
Excitation frequency (Hz) |
Potential Energy Difference | = 0.36 | = 0.37 | = 0.38 |
---|---|---|---|
Between the origin and the saddle point | 0.0026 | 0.0108 | 0.0256 |
Between the center and the saddle point | 0.0465 | 0.0199 | 0.0023 |
Structural Parameter | Resonant Frequency |
---|---|
0.36 | 0.5574 |
0.37 | 0.7822 |
0.38 | 0.9522 |
Structural Parameter | Resonant Frequency |
---|---|
1.6353 | |
1.4046 | |
0.9516 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Shang, H. Multistability Mechanisms for Improving the Performance of a Piezoelectric Energy Harvester with Geometric Nonlinearities. Fractal Fract. 2024, 8, 41. https://doi.org/10.3390/fractalfract8010041
Wang Z, Shang H. Multistability Mechanisms for Improving the Performance of a Piezoelectric Energy Harvester with Geometric Nonlinearities. Fractal and Fractional. 2024; 8(1):41. https://doi.org/10.3390/fractalfract8010041
Chicago/Turabian StyleWang, Zhenhua, and Huilin Shang. 2024. "Multistability Mechanisms for Improving the Performance of a Piezoelectric Energy Harvester with Geometric Nonlinearities" Fractal and Fractional 8, no. 1: 41. https://doi.org/10.3390/fractalfract8010041
APA StyleWang, Z., & Shang, H. (2024). Multistability Mechanisms for Improving the Performance of a Piezoelectric Energy Harvester with Geometric Nonlinearities. Fractal and Fractional, 8(1), 41. https://doi.org/10.3390/fractalfract8010041