A K-Space-Based Temporal Compensating Scheme for a First-Order Viscoacoustic Wave Equation with Fractional Laplace Operators
Abstract
:1. Introduction
2. Theory
2.1. Viscoacoustic Wave Equation
2.2. New First-Order Viscoacoustic Wave Equation Based on the K-Space Method
2.3. Stability Analysis
2.4. Numerical Implementation
Algorithm 1 The numerical implementation of homogeneous medium |
Require: Simulation parameters |
Output: Wavefields (u) and common-gather (r) |
For t = 1: nt
|
end |
Algorithm 2 The numerical implementation of heterogeneous medium |
Require: Simulation parameters |
Output: Wavefields (u) and common-gather (r) |
For t = 1: nt |
Calculate velocity component vx and vz using the low-rank method (LR); |
vxnew = vxold − LR (uold); |
vznew = vzt − LR(uold); |
Compute the spatial derivative using the SGPS method (L) and compensation term calculated by low-rank method (LR); |
unew = uold − L(vxnew, vznew) + LR(uold); |
Load the source (s); |
unew = unew + s; |
save common-gather (r) |
end |
3. Numerical Examples
3.1. Homogeneous Model
3.2. Two-Layer Model
3.3. Marmousi Model
3.4. Field Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alkhalifah, T. An acoustic wave equation for anisotropic media. Geophysics 2000, 65, 1239–1250. [Google Scholar] [CrossRef]
- Carcione, J.M.; Cavallini, F.; Mainardi, F.; Hanyga, A. Time-domain modeling of constant-Q seismic waves using fractional derivatives. Pure Appl. Geophys. 2002, 159, 1719–1736. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, W.; Chen, X. An optimized finite difference method based on a polar coordinate system for regional-scale irregular topography. Earthq. Sci. 2021, 34, 334–343. [Google Scholar] [CrossRef]
- Carcione, J.M.; Kosloff, D.; Kosloff, R. Wave propagation simulation in a linear viscoacoustic medium. Geophys. J. Int. 1988, 93, 393–401. [Google Scholar] [CrossRef]
- Wang, N.; Shi, Y.; Ni, J.; Fang, J.; Yu, B. Enhanced Seismic Attenuation Compensation: Integrating Attention Mechanisms with Residual Learning in Neural Networks. IEEE Trans. Geosci. Remote Sens. 2024. [Google Scholar] [CrossRef]
- Zhu, T.; Harris, J.M.; Biondi, B. Q-compensated reverse-time migration. Geophysics 2014, 79, S77–S87. [Google Scholar] [CrossRef]
- Wang, N.; Xing, G.; Zhu, T.; Zhou, H.; Shi, Y. Propagating Seismic Waves in VTI Attenuating Media Using Fractional Viscoelastic Wave Equation. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023280. [Google Scholar] [CrossRef]
- Xing, G.; Zhu, T. Hessian-based multiparameter fractional viscoacoustic full-waveform inversion. In SEG International Exposition and Annual Meeting; OnePetro: Richardson, TX, USA, 2020. [Google Scholar]
- Yang, J.; Qin, S.; Huang, J.; Zhu, H.; Lumley, D.; McMechan, G.; Zhang, H. Truncated pseudo-differential operator√−▽ 2 and its applications in viscoacoustic reverse-time migration. Geophys. J. Int. 2024, 237, 1794–1807. [Google Scholar] [CrossRef]
- Fornberg, B. High-order finite differences and the pseudospectral method on staggered grids. SIAM J. Numer. Anal. 1990, 27, 904–918. [Google Scholar] [CrossRef]
- Carcione, J.M. A generalization of the Fourier pseudospectral method. Geophysics 2010, 75, A53–A56. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, H.; Chen, H.; Xia, M.; Wang, S.; Fang, J.; Sun, P. A constant fractional-order viscoelastic wave equation and its numerical simulation scheme. Geophysics 2018, 83, T39–T48. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Shi, Y.; Wang, N.; Han, L. High-Accuracy Simulation of Rayleigh Waves Using Fractional Viscoelastic Wave Equation. Fractal Fract. 2023, 7, 880. [Google Scholar] [CrossRef]
- Zhu, T.; Harris, J.M. Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics 2014, 79, T105–T116. [Google Scholar] [CrossRef]
- Liu, W.; Shi, Y.; Wang, N.; Wang, W.; Fang, J. Source-independent Q-compensated viscoacoustic least-squares reverse time migration. Geophysics 2024, 89, 1–68. [Google Scholar] [CrossRef]
- Dablain, M.A. The application of high-order differencing to the scalar wave equation. Geophysics 1986, 51, 54–66. [Google Scholar] [CrossRef]
- Lax, P.D.; Wendroff, B. Difference schemes for hyperbolic equations with high order of accuracy. Commun. Pure Appl. Math. 1964, 17, 381–398. [Google Scholar] [CrossRef]
- Chen, J. A stability formula for Lax-Wendroff methods with fourth order in time and general-order in space for the scalar wave equation. Geophysics 2011, 76, T37–T42. [Google Scholar] [CrossRef]
- Pestana, R.C.; Stoffa, P. Time evolution of the wave equation using rapid expansion method. Geophysics 2010, 75, T121–T131. [Google Scholar] [CrossRef]
- Tessmer, E. Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration. Geophysics 2011, 76, S177–S185. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G. One-step extrapolation method for reverse time migration. Geophysics 2009, 74, A29–A33. [Google Scholar] [CrossRef]
- Sun, J.Z.; Fomel, S.; Ying, L. Low-rank one-step wave extrapolation for reverse time migration. Geophysics 2016, 81, S39–S54. [Google Scholar] [CrossRef]
- Bojarski, N.N. The k-space formulation of the scattering problem in the time domain. J. Acoust. Soc. Am. 1982, 72, 570–584. [Google Scholar] [CrossRef]
- Mast, T.D.; Souriau, L.P.; Liu, D.L.; Tabei, M.; Nachman, A.I.; Waag, R.C. A k-space method for large-scale models of wave propagation in tissue. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2001, 48, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Etgen, J.T.; Brandsberg-Dahl, S. The pseudo-analytical method: Application of pseudo-Laplacians to acoustic and acoustic anisotropic wave propagation. In Proceedings of the 79th Annual International Meeting, SEG, Expanded Abstracts, Houston, TX, USA, 25–30 October 2009; pp. 2552–2556. [Google Scholar] [CrossRef]
- Crawley, S.; Brandsberg-Dahl, S.; McClean, J.; Chemingui, N. TTI reverse time migration using the pseudo-analytic method. Lead. Edge 2010, 29, 1378–1384. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, T.; Zhou, H.; Chen, H.; Zhao, X.; Tian, Y. Fractional Laplacians viscoacoustic wavefield modeling with k-space-based time-stepping error compensating scheme. Geophysics 2020, 85, T1–T13. [Google Scholar] [CrossRef]
- Song, X.; Fomel, S. Fourier finite-difference wave propagation. Geophysics 2011, 76, T123–T129. [Google Scholar] [CrossRef]
- Song, X.L.; Fomel, S.; Ying, L.Y. Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation. Geophys. J. Int. 2013, 193, 960–969. [Google Scholar] [CrossRef]
- Stork, C. Eliminating nearly all dispersion error from FD modeling and RTM with minimal cost increase. In Proceedings of the 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts, Tu 11 07, London, UK, 10–13 June 2013. [Google Scholar]
- Wang, M.; Xu, S. Finite-difference time dispersion transforms for wave propagation. Geophysics 2015, 80, WD19–WD25. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Yao, Z. Third-order symplectic integration method with inverse time dispersion transform for long-term simulation. J. Comput. Phys. 2016, 314, 436–449. [Google Scholar] [CrossRef]
- Li, Y.E.; Wong, M.; Clapp, R. Equivalent accuracy at a fraction of the cost: Overcoming temporal dispersion. Geophysics 2016, 81, T189–T196. [Google Scholar] [CrossRef]
- Koene, E.F.M.; Robertsson, J.O.A.; Broggini, F.; Andersson, F. Eliminating time dispersion from seismic wave modelling. Geophys. J. Int. 2018, 213, 169–180. [Google Scholar] [CrossRef]
- Bojarski, N.N. The k-space formulation of the scattering problem in the time domain: An improved single propagator formulation. J. Acoust. Soc. Am. 1985, 77, 826–831. [Google Scholar] [CrossRef]
- Cox, B.T.; Kara, S.; Arridge, S.R.; Beard, P.C. k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics. J. Acoust. Soc. Am. 2007, 121, 3453–3464. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Nihei, K.; Stefani, J. Seismic modeling in acoustic variable-density media by Fourier finite differences. In Proceedings of the 82nd Annual International Meeting, SEG, Expanded Abstracts, Las Vegas, NV, USA, 4–9 November 2012. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, H.; Zhang, Q.; Chen, Y. Modeling elastic wave propagation using k-space operator-based temporal high-order staggered grid finite-difference method. IEEE Trans. Geosci. Remote Sens. 2016, 55, 801–815. [Google Scholar] [CrossRef]
- Fang, G.; Fomel, S.; Du, Q.; Hu, J. Low rank seismic-wave extrapolation on a staggered grid. Geophysics 2014, 79, T157–T168. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, H.; Zhang, Q.; Xia, M.; Li, Q. A k-space operator based least-squares staggered-grid finite-difference method for modeling scalar wave propagation. Geophysics 2016, 81, T45–T61. [Google Scholar] [CrossRef]
- Du, Q.; Ba, J.; Han, D.; Sun, P.; Zhang, J. A staggered-grid lowrank finite-difference method for elastic wave extrapolation. Ann. Geophys. 2020, 63, 329. [Google Scholar] [CrossRef]
- Firouzi, K.; Cox, B.T.; Treeby, B.E.; Saffari, N. A first-order k-space model for elastic wave propagation in heterogeneous media. J. Acoust. Soc. Am. 2012, 132, 1271–1283. [Google Scholar] [CrossRef]
- Tabei, M.; Mast, T.D.; Waag, R.C. A k-space method for coupled first-order acoustic propagation equations. J. Acoust. Soc. Am. 2002, 111, 53–63. [Google Scholar] [CrossRef]
- Fomel, S.; Ying, L.; Song, X. Seismic wave extrapolation using lowrank symbol approximation. Geophys. Prospect. 2013, 61, 526–536. [Google Scholar] [CrossRef]
- Sun, J.Z.; Zhu, T.Y.; Fomel, S. Viscoacoustic modeling and imaging using low-rank approximation. Geophysics 2015, 80, A103–A108. [Google Scholar] [CrossRef]
- Liu, C.; Lan, H.T.; Guo, Z.Q.; Feng, X.; Lu, Q. Pseudo-spectral modeling and feature analysis of wave propagation in two-phase HTI medium based on reformulated BISQ mechanism. Chin. J. Geophys. 2013, 56, 3461–3473. [Google Scholar] [CrossRef]
- Engquist, B.; Ying, L. A fast directional algorithm for high frequency acoustic scattering in two dimensions. Commun. Math. Sci. 2009, 7, 327–345. [Google Scholar] [CrossRef]
- Xing, G.; Zhu, T. Modeling frequency-independent Q viscoacoustic wave propagation in heterogeneous media. J. Geophys. Res. Solid Earth 2019, 124, 11568–11584. [Google Scholar] [CrossRef]
- Kjartansson, E. Constant Q-wave propagation and attenuation. J. Geophys. Res. 1979, 84, 4737–4748. [Google Scholar] [CrossRef]
- Boyce, W.E.; DiPrima, R.C.; Meade, D.B. Elementary Differential Equations and Boundary Value Problems; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Gazdag, J. Modeling of the acoustic wave equation with transform methods. Geophysics 1981, 46, 854–859. [Google Scholar] [CrossRef]
- Carcione, J.M. Wave Fields in REAL Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Li, Q.Z. High Resolution Seismic Data Processing; Petroleum Industry Press: Beijing, China, 1993. [Google Scholar]
Numerical Scheme | Time Step (ms) | Relative Error (%) | Computation Time (s) |
---|---|---|---|
SGPS | 0.5 | 2.66 | 905.19 |
k-space | 1 | 0.23 | 852.45 |
k-space | 1.5 | 2.43 | 568.37 |
Numerical Scheme | Time Step (ms) | Relative Error (%) | Computation Time (s) |
---|---|---|---|
SGPS | 0.75 | 2.18 | 6.92 |
SGPS | 1 | 4.31 | 5.19 |
k-space | 2 | 2.04 | 4.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Li, F.; Wang, N.; Wang, Y.; Mu, Y.; Shi, Y. A K-Space-Based Temporal Compensating Scheme for a First-Order Viscoacoustic Wave Equation with Fractional Laplace Operators. Fractal Fract. 2024, 8, 574. https://doi.org/10.3390/fractalfract8100574
Chen J, Li F, Wang N, Wang Y, Mu Y, Shi Y. A K-Space-Based Temporal Compensating Scheme for a First-Order Viscoacoustic Wave Equation with Fractional Laplace Operators. Fractal and Fractional. 2024; 8(10):574. https://doi.org/10.3390/fractalfract8100574
Chicago/Turabian StyleChen, Juan, Fei Li, Ning Wang, Yinfeng Wang, Yang Mu, and Ying Shi. 2024. "A K-Space-Based Temporal Compensating Scheme for a First-Order Viscoacoustic Wave Equation with Fractional Laplace Operators" Fractal and Fractional 8, no. 10: 574. https://doi.org/10.3390/fractalfract8100574
APA StyleChen, J., Li, F., Wang, N., Wang, Y., Mu, Y., & Shi, Y. (2024). A K-Space-Based Temporal Compensating Scheme for a First-Order Viscoacoustic Wave Equation with Fractional Laplace Operators. Fractal and Fractional, 8(10), 574. https://doi.org/10.3390/fractalfract8100574