Fractal Strategy for Improving Characterization of N2 Adsorption–Desorption in Mesopores
Abstract
:1. Introduction
2. Materials and Experimental
2.1. Coal Samples
2.2. Measurement of Low-Temperature N2 Adsorption–Desorption
2.3. Calculation of Fractal Dimension for LTNA
3. Results and Discussion
3.1. Mesopore Morphology Analysis
3.2. Mesopore Structure Parameter Analysis
3.3. Estimation of Pore Structure Fractal Characteristics
3.4. Fractal Indicators for Analyzing Adsorption–Desorption Performance of Mesopore
3.5. Implication
4. Conclusions
- (1)
- The PV and SSA of 2–5 nm mesopore structure initially decrease and then increase with coalification and the inflection point corresponding to the second coalification jump. The PV and SSA of mesopores with pore sizes between 5.0 and 50 nm show a trend of first decreasing and then increasing with coalification and the inflection point corresponding to the third coalification jump.
- (2)
- Two fractal indicators, I1 and I2, are proposed based on the fractal dimension D1, D2, D3, and D4, which are applied to evaluate the adsorption–desorption performance of mesopores with pore sizes of 2–5 nm and 5–50 nm, respectively.
- (3)
- The fractal indicator I1 shows an increasing trend with coalification, indicating that the gas adsorption performance of 2–5 nm mesopores is enhanced with coalification, which is not conducive to gas desorption. The fractal indicator I2 exhibits a trend of first increasing and then decreasing with coalification, indicating that the gas desorption performance of mesopores with pore sizes of 5–50 nm decreases initially and then increases.
- (4)
- The proposed indicators provide novel analytical parameters for further understanding the gas adsorption–desorption mechanisms of porous coal-based or carbon-based materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Nie, B.; Liu, X.; Yang, L.; Meng, J.; Li, X. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel 2015, 158, 908–917. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Lorenc-Grabowska, E.; Gryglewicz, G. Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dye. Pigment. 2007, 74, 34–40. [Google Scholar] [CrossRef]
- Rashidi, N.A.; Yusup, S. Overview on the potential of coal-based bottom ash as low-cost adsorbents. ACS Sustain. Chem. Eng. 2016, 4, 1870–1884. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Guillet-Nicolas, R.; García-Martínez, J.; Thommes, M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 2017, 46, 389–414. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Wang, G.; Ni, G.; Wang, L. Comparative analysis of pore structure parameters of coal by using low pressure argon and nitrogen adsorption. Fuel 2022, 309, 122120. [Google Scholar] [CrossRef]
- Ni, G.; Li, S.; Rahman, S.; Xun, M.; Wang, H.; Xu, Y.; Xie, H. Effect of nitric acid on the pore structure and fractal characteristics of coal based on the low-temperature nitrogen adsorption method. Powder Technol. 2020, 367, 506–516. [Google Scholar] [CrossRef]
- Sing, K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2001, 187, 3–9. [Google Scholar] [CrossRef]
- Sing, K.S. Adsorption methods for the characterization of porous materials. Adv. Colloid Interface Sci. 1998, 76, 3–11. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Z.; Jiang, S.; Chang, J.; Zhu, L.; Li, X.; Li, J. Full-scale pore structure and fractal dimension of the Longmaxi shale from the southern Sichuan basin: Investigations using FE-SEM, gas adsorption and mercury intrusion porosimetry. Minerals 2019, 9, 543. [Google Scholar] [CrossRef]
- Srisuda, S.; Virote, B. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials. J. Environ. Sci. 2008, 20, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Zelenka, T. Adsorption and desorption of nitrogen at 77 K on micro-and meso-porous materials: Study of transport kinetics. Microporous Mesoporous Mater. 2016, 227, 202–209. [Google Scholar] [CrossRef]
- Horikawa, T.; Katoh, M.; Tomida, T. Preparation and characterization of nitrogen-doped mesoporous titania with high specific surface area. Microporous Mesoporous Mater. 2008, 110, 397–404. [Google Scholar] [CrossRef]
- Tao, S.; Chen, S.; Tang, D.; Zhao, X.; Xu, H.; Li, S. Material composition, pore structure and adsorption capacity of low-rank coals around the first coalification jump: A case of eastern Junggar Basin, China. Fuel 2018, 211, 804–815. [Google Scholar] [CrossRef]
- Mastalerz, M.; Hampton, L.; Drobniak, A.; Loope, H. Significance of analytical particle size in low-pressure N2 and CO2 adsorption of coal and shale. Int. J. Coal Geol. 2017, 178, 122–131. [Google Scholar] [CrossRef]
- Jia, A.; Hu, D.; He, S.; Guo, X.; Hou, Y.; Wang, T.; Yang, R. Variations of pore structure in organic-rich shales with different lithofacies from the Jiangdong block, fuling shale gas field, SW China: Insights into gas storage and pore evolution. Energy Fuels 2020, 34, 12457–12475. [Google Scholar] [CrossRef]
- Si, N.; Liu, G.; Lin, J.; Chang, P.; Wang, X.; Zhang, Z.; Liu, H. Effects of CS2 Solvent Extraction on Nanopores in Coal. Energy Fuels 2023, 37, 13799–13809. [Google Scholar] [CrossRef]
- Thommes, M.; Smarsly, B.; Groenewolt, M.; Ravikovitch, P.I.; Neimark, A.V. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro-and mesoporous silicas. Langmuir 2006, 22, 756–764. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, J.; Liang, L. Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. J. Nat. Gas Sci. Eng. 2015, 22, 62–72. [Google Scholar] [CrossRef]
- Iraji, S.; De Almeida, T.R.; Munoz, E.R.; Basso, M.; Vidal, A.C. The impact of heterogeneity and pore network characteristics on single and multi-phase fluid propagation in complex porous media: An X-ray computed tomography study. Pet. Sci. 2024, 21, 1719–1738. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Jing, X.; Xiao, W.; Cui, Q. Influence mechanism of pore-scale anisotropy and pore distribution heterogeneity on permeability of porous media. Pet. Explor. Dev. 2019, 46, 594–604. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Zhang, K.; Hao, C.; Wang, L.; Li, W.; Hu, B. Characteristics of microscopic pore structure and fractal dimension of bituminous coal by cyclic gas adsorption/desorption: An experimental study. Fuel 2018, 232, 495–505. [Google Scholar] [CrossRef]
- Liang, J.; Liang, Z.; Zou, R.; Zhao, Y. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 2017, 29, 1701139. [Google Scholar] [CrossRef]
- ALOthman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.; Wang, X.; Li, B.; Liu, H. Fractal characterization on fracture volume in coal based on Ct scanning: Principle, methodology, and implication. Fractals 2022, 30, 2250124. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Z.; Cao, Y.; Wang, X.; Liu, H.; Li, B.; Si, N.; Guan, W. An analogical method on fractal dimension for Three-Dimensional fracture tortuosity in coal based on CT scanning. Fractals 2023, 31, 2350072. [Google Scholar] [CrossRef]
- He, X.; Cheng, Y.; Hu, B.; Wang, Z.; Wang, C.; Yi, M.; Wang, L. Effects of coal pore structure on methane-coal sorption hysteresis: An experimental investigation based on fractal analysis and hysteresis evaluation. Fuel 2020, 269, 117438. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, S.; Tang, D.; Huang, W.; Pan, Z. Determining fractal dimensions of coal pores by FHH model: Problems and effects. J. Nat. Gas Sci. Eng. 2014, 21, 929–939. [Google Scholar] [CrossRef]
- McCartney, J.; Teichmüller, M. Classification of coals according to degree of coalification by reflectance of the vitrinite component. Fuel 1972, 51, 64–68. [Google Scholar] [CrossRef]
- Smith, J.; Smith, J. A relationship between the carbon and hydrogen content of coals and their vitrinite reflectance. Int. J. Coal Geol. 2007, 70, 79–86. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Liu, S.; Chen, S.; Li, W.; Wang, Y. Molecular structure controls on micropore evolution in coal vitrinite during coalification. Int. J. Coal Geol. 2018, 199, 19–30. [Google Scholar] [CrossRef]
- ISO 15901-2:2022; Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 2: Analysis of nanopores by gas adsorption. ISO: Geneva, Switzerland, 2022.
- Tang, Y.-b.; Liu, Q.; Chen, F.-y. Preparation and characterization of activated carbon from waste ramulus mori. Chem. Eng. J. 2012, 203, 19–24. [Google Scholar] [CrossRef]
- Ren, P.; Xu, H.; Tang, D.; Li, Y.; Chen, Z.; Sun, C.; Zhang, F.; Chen, S.; Xin, F.; Cao, L. Pore structure and fractal characterization of main coal-bearing synclines in western Guizhou, China. J. Nat. Gas Sci. Eng. 2019, 63, 58–69. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Qi, Y.; Wang, R.; Wang, L.; Jiang, J. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption. Powder Technol. 2019, 350, 15–25. [Google Scholar] [CrossRef]
- Cui, J.; Niu, X.; Feng, G.; Han, Y.; Li, Z. Effect of Division Methods of the Adsorption Isotherm on the Fractal Dimension of Clay Minerals Calculated Based on the Frenkel-Halsey-Hill Model. Energy Fuels 2021, 35, 8786–8798. [Google Scholar] [CrossRef]
- Han, W.; Zhou, G.; Gao, D.; Zhang, Z.; Wei, Z.; Wang, H.; Yang, H. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry. Powder Technol. 2020, 362, 386–398. [Google Scholar] [CrossRef]
- Bu, H.; Ju, Y.; Tan, J.; Wang, G.; Li, X. Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China. J. Nat. Gas Sci. Eng. 2015, 24, 166–177. [Google Scholar] [CrossRef]
- Fu, H.; Tang, D.; Xu, T.; Xu, H.; Tao, S.; Li, S.; Yin, Z.; Chen, B.; Zhang, C.; Wang, L. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel 2017, 193, 254–264. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, J.; Yang, Y.; Cheng, J.; Zhou, J.; Cen, K. Fractal characteristics of pore structures in 13 coal specimens: Relationship among fractal dimension, pore structure parameter, and slurry ability of coal. Fuel Process. Technol. 2016, 149, 256–267. [Google Scholar] [CrossRef]
- Li, A.; Ding, W.; He, J.; Dai, P.; Yin, S.; Xie, F. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: A case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China. Mar. Pet. Geol. 2016, 70, 46–57. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Cai, Y.; Wang, Y.; Teng, J. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel 2019, 257, 116031. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, W.; Cheng, Y.; Zhao, K.; Zheng, S. Pore structure characterization of coal particles via MIP, N2 and CO2 adsorption: Effect of coalification on nanopores evolution. Powder Technol. 2019, 354, 136–148. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.; Cao, Y.; Lin, J.; Jin, Y.; Xian, B.; Lv, R.; Zhang, Z. Experimental Investigation of CS2 Extraction to Enhance the Permeability of Coal. Transp. Porous Media 2021, 136, 899–922. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Liu, J.; Chen, X.; Li, Z. Effect of the pore structure on adsorption and diffusion migration of different rank coal samples. Energy Fuels 2020, 34, 12486–12504. [Google Scholar] [CrossRef]
- Niu, Q.; Pan, J.; Jin, Y.; Wang, H.; Li, M.; Ji, Z.; Wang, K.; Wang, Z. Fractal study of adsorption-pores in pulverized coals with various metamorphism degrees using N2 adsorption, X-ray scattering and image analysis methods. J. Pet. Sci. Eng. 2019, 176, 584–593. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, D.; Karpyn, Z.; Cai, Y.; Yao, Y. Effect of coalification jumps on petrophysical properties of various metamorphic coals from different coalfields in China. J. Nat. Gas Sci. Eng. 2018, 60, 63–76. [Google Scholar] [CrossRef]
- Zhao, S.; Shao, L.; Hou, H.; Tang, Y.; Li, Z.; Yao, M.; Zhang, J. Methane adsorption characteristics and its influencing factors of the medium-to-high rank coals in the Anyang-Hebi coalfield, northern China. Energy Explor. Exploit. 2019, 37, 60–82. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Huang, W. Influences of igneous intrusions on coal rank, coal quality and adsorption capacity in Hongyang, Handan and Huaibei coalfields, North China. Int. J. Coal Geol. 2011, 88, 135–146. [Google Scholar] [CrossRef]
- Ouyang, Z.; Liu, D.; Cai, Y.; Yao, Y. Fractal analysis on heterogeneity of pore–fractures in middle-high rank coals with NMR. Energy Fuels 2016, 30, 5449–5458. [Google Scholar] [CrossRef]
- Liu, X.; Nie, B. Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel 2016, 182, 314–322. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.; Wang, X.; Lv, R.; Liu, H.; Lin, J.; Barakos, G.; Chang, P. A fractal Langmuir adsorption equation on coal: Principle, methodology and implication. Chem. Eng. J. 2024, 488, 150869. [Google Scholar] [CrossRef]
- Wang, X.; He, R.; Chen, Y. Evolution of porous fractal properties during coal devolatilization. Fuel 2008, 87, 878–884. [Google Scholar] [CrossRef]
- Cao, L.; He, R. Gas diffusion in fractal porous media. Combust. Sci. Technol. 2010, 182, 822–841. [Google Scholar] [CrossRef]
- Erdenetsogt, B.-O.; Lee, I.; Lee, S.K.; Ko, Y.-J.; Bat-Erdene, D. Solid-state C-13 CP/MAS NMR study of Baganuur coal, Mongolia: Oxygen-loss during coalification from lignite to subbituminous rank. Int. J. Coal Geol. 2010, 82, 37–44. [Google Scholar] [CrossRef]
- Landais, P.; Gerard, L. Coalification stages from confined pyrolysis of an immature humic coal. Int. J. Coal Geol. 1996, 30, 285–301. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.; Chang, P.; Wang, X.; Lin, J. Fractal characteristics for coal chemical structure: Principle, methodology and implication. Chaos Solitons Fractals 2023, 173, 113699. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Zhang, Y. Evolution mechanism of methane adsorption capacity in vitrinite-rich coal during coalification. J. Nat. Gas Sci. Eng. 2021, 96, 104307. [Google Scholar] [CrossRef]
- Sang, S.; Zhu, Y.; Zhang, S.; Zhang, J.; Tang, J. Solid-Gas Interaction Mechansim of Coal Adsorbed Gas (I)-Coal Pore Structure and Solid-Gas Interaction. Nat. Gas Ind. 2005, 25, 13–15. [Google Scholar]
- Chen, Y.; Mastalerz, M.; Schimmelmann, A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int. J. Coal Geol. 2012, 104, 22–33. [Google Scholar] [CrossRef]
- Cao, X.; Chappell, M.A.; Schimmelmann, A.; Mastalerz, M.; Li, Y.; Hu, W.; Mao, J. Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state 13C NMR spectroscopy. Int. J. Coal Geol. 2013, 108, 53–64. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, Q.; Ren, J.; Zhang, L.; Yuan, Y. Dynamic Gas Diffusion Model of Capillary Pores in a Coal Particle Based on Pore Fractal Characteristics. Transp. Porous Media 2021, 140, 581–601. [Google Scholar] [CrossRef]
- Weibel, E.R. Fractal geometry: A design principle for living organisms. Am. J. Physiol. 1991, 261, L361–L369. [Google Scholar] [CrossRef]
- Fan, J.A.; Yeo, W.H.; Su, Y.W.; Hattori, Y.; Lee, W.; Jung, S.Y.; Zhang, Y.H.; Liu, Z.J.; Cheng, H.Y.; Falgout, L.; et al. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Gutbrod, S.R.; Ma, Y.; Petrossians, A.; Liu, Y.; Webb, R.C.; Fan, J.A.; Yang, Z.; Xu, R.; Whalen, J.J., III. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 2015, 27, 1731–1737. [Google Scholar] [CrossRef]
- Hu, Y.-C.; Bai, H.; Wang, W.-H. Accessing versatile tensile ductility of amorphous materials by fractal nanoarchitecture design. Acta Mater. 2024, 247, 120100. [Google Scholar] [CrossRef]
- Geng, Y.; Sun, W.; Ying, P.J.; Zheng, Y.J.; Ding, J.; Sun, K.; Li, L.; Li, M. Bioinspired Fractal Design of Waste Biomass-Derived Solar-Thermal Materials for Highly Efficient Solar Evaporation. Adv. Funct. Mater. 2021, 31, 2007648. [Google Scholar] [CrossRef]
- Jiang, G.; Senthil, R.A.; Sun, Y.; Kumar, T.R.; Pan, J. Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors. J. Power Sources 2022, 520, 230886. [Google Scholar] [CrossRef]
- Dong, S.; He, X.J.; Zhang, H.F.; Xie, X.Y.; Yu, M.X.; Yu, C.; Xiao, N.; Qiu, J.S. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 15954–15960. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wan, Q.J.; Yang, N.J. Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. Small 2019, 15, 1903780. [Google Scholar] [CrossRef]
- Zhou, D.; Cui, Y.; Xiao, P.W.; Jiang, M.Y.; Han, B.H. A general and scalable synthesis approach to porous graphene. Nat. Commun. 2014, 5, 4716. [Google Scholar] [CrossRef]
Coal | Proximate Analysis (%) | Ro,max (%) | |||
---|---|---|---|---|---|
Mad | Ad | Vdaf | FCad | ||
CY | 2.35 | 8.15 | 34.57 | 54.93 | 0.86 |
PD | 0.97 | 10.10 | 25.11 | 66.67 | 1.22 |
XQ | 0.61 | 11.14 | 18.59 | 69.66 | 1.60 |
YW | 1.30 | 10.21 | 9.34 | 78.90 | 2.18 |
WY | 1.01 | 2.12 | 10.70 | 87.53 | 2.39 |
YX | 2.81 | 8.17 | 6.66 | 83.29 | 2.99 |
Coal | PV<5.0 nm (×10−2cm3/g) | SSA<5.0 nm (m2/g) | PV5.0–50 nm (×10−2cm3/g) | SSA5.0–50 nm (m2/g) | Ro,max/% |
---|---|---|---|---|---|
CY | 0.0362 | 0.5400 | 0.2609 | 0.5150 | 0.86 |
PD | 0.0159 | 0.2139 | 0.1826 | 0.2668 | 1.22 |
XQ | 0.0232 | 0.3084 | 0.1596 | 0.2826 | 1.60 |
YW | 0.0397 | 0.5564 | 0.0701 | 0.1126 | 2.18 |
WY | 0.0429 | 0.6510 | 0.0786 | 0.1710 | 2.39 |
YX | 0.0617 | 0.7612 | 0.2321 | 0.3959 | 2.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, K.; Liu, G.; Zhang, Z.; Liu, H.; Lv, R.; Wang, X.; Chang, P.; Lin, J.; Barakos, G. Fractal Strategy for Improving Characterization of N2 Adsorption–Desorption in Mesopores. Fractal Fract. 2024, 8, 617. https://doi.org/10.3390/fractalfract8110617
Feng K, Liu G, Zhang Z, Liu H, Lv R, Wang X, Chang P, Lin J, Barakos G. Fractal Strategy for Improving Characterization of N2 Adsorption–Desorption in Mesopores. Fractal and Fractional. 2024; 8(11):617. https://doi.org/10.3390/fractalfract8110617
Chicago/Turabian StyleFeng, Kunpeng, Gaofeng Liu, Zhen Zhang, Huan Liu, Runsheng Lv, Xiaoming Wang, Ping Chang, Jia Lin, and George Barakos. 2024. "Fractal Strategy for Improving Characterization of N2 Adsorption–Desorption in Mesopores" Fractal and Fractional 8, no. 11: 617. https://doi.org/10.3390/fractalfract8110617
APA StyleFeng, K., Liu, G., Zhang, Z., Liu, H., Lv, R., Wang, X., Chang, P., Lin, J., & Barakos, G. (2024). Fractal Strategy for Improving Characterization of N2 Adsorption–Desorption in Mesopores. Fractal and Fractional, 8(11), 617. https://doi.org/10.3390/fractalfract8110617