A Fourier Series Technique for Approximate Solutions of Modified Anomalous Time-Fractional Sub-Diffusion Equations
Abstract
:1. Introduction
2. Preliminaries
3. Main Method
3.1. Reducing the Main Problem to a Set of Independent Initial Value Problems (IVPs)
- exists and is finite;
- must have finite number of extreme points;
- has a finite number of finite discontinuities.
3.2. Solving the Obtained IVPs
3.3. Algorithm
Algorithm 1: Provided Algorithm |
Require: , . |
; |
for do |
end for |
for do |
for do |
end for |
end for |
4. Numerical Results
- •
- Max absolute error: .
- •
- Relative error: .
5. Conclusions
- •
- Solving variable-order fractional differential equations.
- •
- Solving FDEs with other types of fractional differentiation.
- •
- Solving (2+1)- and (3+1)-dimensional FDEs.
- •
- As the obtained systems of ODEs are independent equations, we can consider a parallel algorithm to solve them.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sokolov, I.M.; Klafter, J. From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion. Chaos Interdiscip. J. Nonlinear Sci. 2005, 15, 026103. [Google Scholar] [CrossRef]
- Liu, F.; Yang, C.; Burrage, K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231, 160–176. [Google Scholar] [CrossRef]
- Brown, E.B.; Wu, E.S.; Zipfel, W.; Webb, W.W. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys. J. 1999, 77, 2837–2849. [Google Scholar] [CrossRef] [PubMed]
- Malchus, N.; Weiss, M. Elucidating anomalous protein diffusion in living cells with fluorescence correlation spectroscopy–facts and pitfalls. J. Fluoresc. 2010, 20, 19–26. [Google Scholar] [CrossRef]
- Saxton, M. Anomalous diffusion due to binding: A Monte Carlo study. Biophys. J. 1996, 70, 1250–1262. [Google Scholar] [CrossRef] [PubMed]
- Saxton, M.J. Anomalous subdiffusion in fluorescence photobleaching recovery: A Monte Carlo study. Biophys. J. 2001, 81, 2226–2240. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Yuste, S.B.; Lindenberg, K. Subdiffusion-limited A+A reactions. Phys. Rev. Lett. 2001, 87, 118301. [Google Scholar] [CrossRef]
- Yuste, S.B.; Lindenberg, K. Subdiffusion-limited reactions. Chem. Phys. 2002, 284, 169–180. [Google Scholar] [CrossRef]
- Yuste, S.B.; Acedo, L.; Lindenberg, K. Reaction front in an A+ C reaction-subdiffusion process. Phys. Rev. E 2004, 69, 036126. [Google Scholar] [CrossRef]
- Seki, K.; Wojcik, M.; Tachiya, M. Fractional reaction-diffusion equation. J. Chem. Phys. 2003, 119, 2165–2170. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, F.; Anh, V. A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math. 2009, 223, 777–789. [Google Scholar] [CrossRef]
- Marseguerra, M.; Zoia, A. Monte Carlo evaluation of fade approach to anomalous kinetics. Math. Comput. Simul. 2008, 77, 345–357. [Google Scholar] [CrossRef]
- Nichols, J.; Henry, B.; Angstmann, C. Subdiffusive discrete time random walks via Monte Carlo and subordination. J. Comput. Phys. 2018, 372, 373–384. [Google Scholar] [CrossRef]
- Scotti, L.; Warnken, N.; Mottura, A. Non-classical interstitial sites and anomalous diffusion mechanisms in hcp-titanium. Acta Mater. 2019, 177, 68–81. [Google Scholar] [CrossRef]
- Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Appl. 2000, 284, 376–384. [Google Scholar] [CrossRef]
- Scalas, E. The application of continuous-time random walks in finance and economics. Phys. A Stat. Mech. Appl. 2006, 362, 225–239. [Google Scholar] [CrossRef]
- Masoliver, J.; Montero, M.; Perelló, J.; Weiss, G.H. The continuous time random walk formalism in financial markets. J. Econ. Behav. Organ. 2006, 61, 577–598. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Gao, G.H.; Sun, Z.Z.; Zhang, H.W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Luchko, Y. Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 2009, 12, 409–422. [Google Scholar]
- Ma, Y.; Zhang, F.; Li, C. The asymptotics of the solutions to the anomalous diffusion equations. Comput. Math. Appl. 2013, 66, 682–692. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Cui, M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228, 7792–7804. [Google Scholar] [CrossRef]
- Wang, Z.; Vong, S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 2014, 277, 1–15. [Google Scholar] [CrossRef]
- Dehghan, M.; Abbaszadeh, M.; Mohebbi, A. Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation. Appl. Math. Model. 2016, 40, 3635–3654. [Google Scholar] [CrossRef]
- Reutskiy, S. A new semi-analytical collocation method for solving multi-term fractional partial differential equations with time variable coefficients. Appl. Math. Model. 2017, 45, 238–254. [Google Scholar] [CrossRef]
- Cao, X.; Cao, X.; Wen, L. The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2017, 318, 199–210. [Google Scholar] [CrossRef]
- Kheybari, S.; Alizadeh, F.; Darvishi, M.T.; Hosseini, K.; Hincal, E. A novel semi-analytical scheme to deal with fractional partial differential equations (PDEs) of variable-order. Fractal Fract. 2024, 8, 425. [Google Scholar] [CrossRef]
- Kheybari, S. Numerical algorithm to caputo type time–space fractional partial differential equations with variable coefficients. Math. Comput. Simul. 2021, 182, 66–85. [Google Scholar] [CrossRef]
- Kheybari, S.; Darvishi, M.T.; Hashemi, M.S. Numerical simulation for the space-fractional diffusion equations. Appl. Math. Comput. 2019, 348, 57–69. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204, Available online: https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/204 (accessed on 2 November 2024).
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Jeffrey, A. Advanced Engineering Mathematics; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Borwein, P.; Erdélyi, T.; Zhang, J. Müntz systems and orthogonal Müntz-Legendre polynomials. Trans. Am. Math. Soc. 1994, 342, 523–542. [Google Scholar] [CrossRef]
- Mokhtary, P.; Ghoreishi, F.; Srivastava, H. The Müntz-Legendre Tau method for fractional differential equations. Appl. Math. Model. 2016, 40, 671–684. [Google Scholar] [CrossRef]
- Mohebbi, A.; Abbaszadeh, M.; Dehghan, M. A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 2013, 240, 36–48. [Google Scholar] [CrossRef]
Our Results for | Reported Results in [39] | Reported Results in [25] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CPU Time (s) | CPU Time (s) | |||||||||
16 | 16 | 7.487 | 0.1570 | |||||||
24 | 16 | 12.581 | 0.2349 | |||||||
32 | 16 | 17.835 | 0.4839 | |||||||
40 | 16 | 23.641 | 1.3439 | |||||||
48 | 16 | 29.783 | 4.4690 | |||||||
56 | 16 | 36.310 | 16.4840 | |||||||
64 | 16 | 43.310 | 63.3280 |
J | K | CPU Time (s) | ||||
---|---|---|---|---|---|---|
16 | 8 | 1.80881 | 5.32615 | 2.918 | ||
16 | 1.56795 | 3.73332 | 7.487 | |||
24 | 1.48942 | 3.0481 | 12.581 | |||
32 | 1.47311 | 2.71235 | 17.835 | |||
40 | 1.50115 | 3.47158 | 23.641 | |||
48 | 1.58745 | 3.38432 | 29.783 | |||
56 | 1.81449 | 2.50484 | 36.310 | |||
64 | 2.17612 | 1.9722 | 43.431 | |||
72 | 0.57701 | 1.91675 | 50.919 | |||
80 | 0.40594 | 2.86123 | 58.848 | |||
88 | 0.77341 | 3.03152 | 67.200 | |||
96 | 0.92099 | 2.32035 | 76.073 | |||
104 | 1.01064 | 1.70813 | 85.546 | |||
112 | 1.08048 | 1.66315 | 95.438 | |||
120 | 1.14695 | 2.63196 | 105.852 | |||
128 | 116.853 |
J | K | CPU Time (s) | ||||
---|---|---|---|---|---|---|
16 | 8 | 2.18220 | 5.32615 | 2.939 | ||
16 | 1.93531 | 3.73332 | 7.478 | |||
24 | 1.85493 | 3.04810 | 12.417 | |||
32 | 1.83758 | 2.71235 | 17.677 | |||
40 | 1.86460 | 3.47158 | 23.480 | |||
48 | 1.94912 | 3.38432 | 29.827 | |||
56 | 2.17051 | 2.50484 | 36.634 | |||
64 | 2.52752 | 1.97220 | 44.029 | |||
72 | 1.00220 | 1.91675 | 52.009 | |||
80 | 0.75487 | 2.86123 | 60.292 | |||
88 | 1.13331 | 3.03152 | 68.570 | |||
96 | 1.28313 | 2.32035 | 77.756 | |||
104 | 1.37353 | 1.70813 | 87.249 | |||
112 | 1.44361 | 1.66315 | 97.394 | |||
120 | 1.51002 | 2.63196 | 107.755 | |||
128 | 118.732 |
Our Results for | Reported Results in [26] | ||||||||
---|---|---|---|---|---|---|---|---|---|
CPU Time (s) | |||||||||
8 | 24 | 1.4912 | 3.0430 | 2.653 | 0.4561 | ||||
32 | 1.4750 | 2.8655 | 6.631 | 0.5209 | |||||
40 | 1.5042 | 3.4574 | 11.036 | 0.5611 | |||||
48 | 1.5939 | 3.1578 | 15.837 | 0.5888 | |||||
56 | 1.8357 | 2.3677 | 20.801 | 0.6083 | |||||
64 | 1.9745 | 1.7463 | 26.456 | 0.6237 | |||||
72 | 0.6521 | 3.0176 | 32.567 | 0.6345 | |||||
80 | 0.4381 | 1.4481 | 38.924 | 0.6435 | |||||
88 | 0.7784 | 2.3326 | 45.849 | 0.7135 | |||||
96 | 53.098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kheybari, S.; Alizadeh, F.; Darvishi, M.T.; Hosseini, K. A Fourier Series Technique for Approximate Solutions of Modified Anomalous Time-Fractional Sub-Diffusion Equations. Fractal Fract. 2024, 8, 718. https://doi.org/10.3390/fractalfract8120718
Kheybari S, Alizadeh F, Darvishi MT, Hosseini K. A Fourier Series Technique for Approximate Solutions of Modified Anomalous Time-Fractional Sub-Diffusion Equations. Fractal and Fractional. 2024; 8(12):718. https://doi.org/10.3390/fractalfract8120718
Chicago/Turabian StyleKheybari, Samad, Farzaneh Alizadeh, Mohammad Taghi Darvishi, and Kamyar Hosseini. 2024. "A Fourier Series Technique for Approximate Solutions of Modified Anomalous Time-Fractional Sub-Diffusion Equations" Fractal and Fractional 8, no. 12: 718. https://doi.org/10.3390/fractalfract8120718
APA StyleKheybari, S., Alizadeh, F., Darvishi, M. T., & Hosseini, K. (2024). A Fourier Series Technique for Approximate Solutions of Modified Anomalous Time-Fractional Sub-Diffusion Equations. Fractal and Fractional, 8(12), 718. https://doi.org/10.3390/fractalfract8120718