Next Article in Journal
Approximate and Exact Controllability for Hilfer Fractional Stochastic Evolution Equations
Previous Article in Journal
Introducing an Enhanced Cumulative Size Distribution Model to Unearth the Origins of Macropore Heterogeneity of the Chang-7 Shale Oil Reservoirs in the Ordos Basin
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Bridging Pre-Invex Mappings and Fractional Integrals: A Pathway to Iterative Schemes via Error Boundaries of Maclaurin’s Rule

1
School of Mathematics and Physics, Anqing Normal University, Anqing 246133, China
2
Department of Mathematics, Government College University Faisalabad, Faisalabad 38000, Pakistan
3
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
4
Department of Mathematics, Politehnica University of Timisoara, 300006 Timisoara, Romania
5
Laboratory of Analysis and Control of Differential Equations ‘ACED’, Department of Mathematics, University of 8 May 1945, Guelma 24000, Algeria
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2024, 8(12), 734; https://doi.org/10.3390/fractalfract8120734
Submission received: 23 October 2024 / Revised: 2 December 2024 / Accepted: 6 December 2024 / Published: 13 December 2024
(This article belongs to the Section General Mathematics, Analysis)

Abstract

:
In this paper, we aim to investigate corrected Euler–Maclaurin inequalities involving pre-invex mappings within the framework of fractional calculus. We want to find a number of important results for differentiable pre-invex mappings and Riemann–Liouville (RL) fractional integrals so that we can make more accurate error estimates. Additionally, we present examples with graphical illustrations to substantiate our major findings and deduce several special cases under certain conditions. Afterwards, we introduce applications such as the linear combination of means, composite corrected Maclaurin’s rule, modified Bessel mappings, and novel iterative methods for solving nonlinear equations.

1. Introduction

The concept of convexity is fundamental and intrinsic. A mapping T : X R is said to be convex if
T ( ı 1 + ( 1 ) ı 2 ) T ( ı 1 ) + ( 1 ) T ( ı 2 ) , ı 1 , ı 2 X , [ 0 , 1 ] ,
where X is a convex set and R is a set of real numbers. Convexity plays a crucial role in several domains of physical sciences, including economics, finance, optimization, and engineering. Mathematical inequality and optimization have gained significant advancements from many interesting extensions and generalizations of classical convexity. Generalized convex mappings, such as ı 2 -vex, sub- ı 2 -convex, pre-invex, and ı 2 -pre-invex, are extensively used in optimization and inequalities to tackle with non-convex mappings. Using invex sets, Weir and Mond [1] introduced a class of mappings known as pre-invex, which is explored as follows.
A mapping T : Y R is said to be a pre-invex on an invex set Y with respect to bifunction ξ , if
T ( ı 1 + ξ ( ı 2 , ı 1 ) ) ( 1 ) T ( ı 1 ) + T ( ı 2 ) ,
where [ 0 , 1 ] .
Moreover, Weir and Mond [2] investigated the situations and circumstances in which pre-invex mappings could take the role of convex mappings. Some properties of pre-invex mappings were presented by Mohan and Neogy [3]. Now, we enlist some significant contributions related to pre-invex mappings, which are crucial to conduct further investigation. Matloka [4] implemented the pre-invexity to examine some classic inequalities. Noor et al. [5] employed general pre-invex mappings to analyze trapezium-like inequalities. In 2014, Ozan [6] explored the classic inequalities concerning trapezium inequality incorporated with multiplicative pre-invexity. Lakhdari and Meftah [7] demonstrated some weighted Hadamard-like inequalities through h-pre-invexity. In 2021, Tariq and his group [8] explored various inequalities through a new unified pre-invexity of mappings. For more details, see [9,10]. The increasing interest in fractional calculus is driven by its diverse applications across scientific fields; for more details, see [11]. Mathematicians have explored various fractional integral inequalities to obtain more rectified bounds for existing quantities, such as Hermite–Hadamard’s and Simpson-type inequalities, as well as Newton and Euler–Maclaurin’s. There is no denying that fractional calculus can be used to solve a wide range of complex issues in science, engineering, and mathematics [12]. In fractional calculus, the RL fractional integral is the primary operator and is defined as follows.
Let T L [ ı 1 , ı 2 ] . The RL integrals J ı 1 + δ 1 T and J ı 2 δ 1 T of order δ 1 > 0 with ı 1 0 are defined by
J ı 1 + δ 1 T ( ν ) = 1 Γ ( δ 1 ) ı 1 ν ( ν ) δ 1 1 T ( ) d , ν > ı 1
and
J ı 2 δ 1 T ( ν ) = 1 Γ ( δ 1 ) ν ı 2 ( ν ) δ 1 1 T ( ) d , ν < ı 2 ,
respectively. Here, Γ ( δ 1 ) is the Gamma mapping and J ı 1 + 0 T ( ν ) = J ı 2 0 T ( ν ) = T ( ν ) . For more details, see [13,14,15].
The concept of generalized fractional integrals was developed by Sarikaya and Ertu g ˇ ral [16], who also derived Hadamard-type inequalities. As a result, mathematicians have extensively studied Hermite–Hadamard-type inequalities, as well as related ones like the trapezoid, midpoint, and Simpson’s inequalities.
Integral inequalities are the primary source for developing novel bounds for the remainder of the terms associated with Newton–Cotes schemes for differentiable convex mapping and various other classes of mapping. Furthermore, certain writers have set additional limits by utilizing the idea of fractional calculus. For example, Dragomir and Agarwal [17] examined the error inequalities of the trapezoidal rule by taking into account the first-order differentiability of convex mappings. In 2013, Alomari [18] investigated trapezoidal inequalities using Lipschitzian mappings and bounded variation mappings. Furthermore, Sarikaya and Yildirim [19] delivered some general versions of Hadamard’s inequalities by utilizing fractional operators and convexity strategies. Dragomir [20] computed the midpoint inequalities using bounded variation and Lipschitzian mapping. Set et al. [21] investigated the fractional Simpson-like inequalities by utilizing the concept of Riemann–Liouville fractional operators. Zhu et al. [22] explored the various error inequalities of quadrature processes through convex functions within multiplicative calculus. Hussain et al. [23] also analyzed Simpson-like inequalities through generalized fractional operators and the convexity properties of functions. Likewise, several approaches and bounds regarding Simpson-type inequalities are formulated in [24,25].
Using pre-invex mappings, Ali et al. [26] explored Simpson-like inequalities by leveraging the concepts of quantum calculus. Bin-Mohsin et al. [27] investigated Milne’s kinds of inequalities associated with Mercer’s inequality for convex mappings. You et al. [28] provided more variants and insights into Simpson’s kinds of inequalities, considering twice differentiable mappings in a fractional environment.
The Euler-corrected Maclaurin rule is given in [29] as
ı 1 ı 2 T ( ν ) d x ı 2 ı 1 80 27 T 5 ı 1 + ı 2 6 + 26 T ı 1 + ı 2 2 + 27 T ı 1 + 5 ı 2 6 .
And the corresponding Maclaurin’s inequality is given as
Suppose that T : [ ı 1 , ı 2 ] R is a fourth-order continuous differentiable mapping on ( ı 1 , ı 2 ) and | | T ( 4 ) | | = sup ν ( ı 1 , ı 2 ) | T ( 4 ) ( ν ) | < . Then, the inequality
1 80 27 T 5 ı 1 + ı 2 6 + 26 T ı 1 + ı 2 2 + 27 T ı 1 + 5 ı 2 6 1 ı 2 ı 1 ı 1 ı 2 T ( ν ) d x 2401 28800 | | T ( 4 ) | | ( ı 2 ı 1 ) 4 .
Franji c ´ and Pe c ˇ ari c ´ [30] have demonstrated the corrected Euler–Maclaurin’s inequalities. In 2024, Hezenci and Budak [31], explored the Euler–Maclaurin-like inequalities through various classes of mappings.
In this work, by employing the concept of fractional operators, we shall construct fractional analogues of Maclaurin’s inequality through pre-invex mappings. The primary goal of looking at these inequalities is to forecast more robust and precise bounds of error terms. Initially, we will demonstrate the integral equality, which is essential to proving the article’s main findings. Additionally, using RL fractional integrals, several corrected Euler–Maclaurin-type inequalities for the case of differentiable pre-invex mappings will be established. In addition, we will present some examples with graphical representations to illustrate and confirm the validity of the recently derived inequalities. The last section will demonstrate the implications for means, composite error bounds, modified Bessel mappings, and iterative rules having an order of convergence of three to determine the roots of nonlinear equations.

2. Auxiliary Result

In this section, we derive an auxiliary result, which helps us to find our main results.
Lemma 1.
Let T : [ ı 1 , ı 1 + ξ ı 2 + ı 1 ] R be an absolutely continuous mapping ( ı 1 , ı 2 ) so that T L ( [ ı 1 , ı 1 + ξ ı 2 + ı 1 ] ) with ξ ı 2 + ı 1 0 , then
1 80 27 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + 26 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 + 27 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 Γ ( δ 1 + 1 ) 2 ( ξ ( ı 2 , ı 1 ) ) δ 1 J ı 1 + δ 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) + J ( ı 1 + ξ ( ı 2 , ı 1 ) ) δ 1 T ( ı 1 ) = ξ ( ı 2 , ı 1 ) 2 [ I 1 + I 2 + I 3 + I 4 ] .
Here,
I 1 = 0 1 6 δ 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d , I 2 = 1 6 1 2 δ 1 27 80 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d , I 3 = 1 2 5 6 δ 1 53 80 T ( a + ξ ( ı 2 , ı 1 ) ) T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d , I 4 = 5 6 1 ( δ 1 1 ) T ( ı 1 + ξ ( ı 2 , ı 1 ) ) T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d .
Proof. 
By the principle of integration by parts, we obtain
I 1 = 0 1 6 δ 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d = 1 ξ ( ı 2 , ı 1 ) δ 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) + T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) 0 1 6 δ 1 ξ ( ı 2 , ı 1 ) 0 1 6 δ 1 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) + T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d = 1 6 δ 1 ξ ( ı 2 , ı 1 ) T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + T 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 δ 1 ξ ( ı 2 , ı 1 ) 0 1 6 δ 1 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) + T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d .
Similarly,
I 2 = 1 ξ ( ı 2 , ı 1 ) 2 1 2 δ 1 27 80 T 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 1 6 δ 1 27 80 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + T 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 δ 1 ξ ( ı 2 , ı 1 ) 1 6 1 2 δ 1 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) + T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d ,
I 3 = 1 ξ ( ı 2 , ı 1 ) 5 6 δ 1 53 80 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + T 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 2 1 2 δ 1 53 80 T 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 δ 1 ξ ( ı 2 , ı 1 ) 1 2 5 6 δ 1 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) + T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d
and
I 4 = 1 ξ ( ı 2 , ı 1 ) 5 6 δ 1 1 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + T 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 δ 1 ξ ( ı 2 , ı 1 ) 5 6 1 δ 1 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) + T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d .
If we add (4) to (7), then we have
I 1 + I 2 + I 3 + I 4 = 1 40 ξ ( ı 2 , ı 1 ) 27 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + 26 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 + 27 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 δ 1 ξ ( ı 2 , ı 1 ) 0 1 δ 1 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) d + 0 1 δ 1 1 T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d .
With the change in variable ν = ı 1 + ξ ( ı 2 , ı 1 ) and y = ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) for [ 0 , 1 ] , from (8), we have
I 1 + I 2 + I 3 + I 4 = 1 40 ξ ( ı 2 , ı 1 ) 27 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + 26 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 + 27 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 δ 1 ξ ( ı 2 , ı 1 ) J ı 1 + δ 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) + J ( ı 1 + ξ ( ı 2 , ı 1 ) ) δ 1 T ( ı 1 ) .
Multiplying (9) by ξ ( ı 2 , ı 1 ) 2 , we then obtain (3). This finishes the proof. □

3. Main Results

In the following segment of this study, we prove some novel error boundaries of Euler-corrected Maclaurin’s procedure through a larger space of functions known as pre-invex mappings, auxiliary lemma, and some elementary inequalities from the theory of inequalities.
Theorem 1.
If the requirements of Lemma 1 are satisfied and the mapping | T | is pre-invex on [ ı 1 , ı 1 + ξ ı 2 , ı 1 ] , then
Ω T ; ı 1 , ı 2 ; ξ ; ν ξ ( ı 2 , ı 1 ) 2 Ω 1 ( δ 1 ) + Ω 2 ( δ 1 ) + Ω 3 ( δ 1 ) + Ω 4 ( δ 1 ) | T ( ı 1 ) | + | T ( ı 2 ) | ,
where
Ω T ; ı 1 , ı 2 ; ξ ; ν = 1 80 27 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + 26 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 + 27 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 Γ ( δ 1 + 1 ) 2 ( ξ ( ı 2 , ı 1 ) ) δ 1 J ı 1 + δ 1 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) + J ( ı 1 + ξ ( ı 2 , ı 1 ) ) δ 1 T ( ı 1 ) .
Here, Ω 1 ( δ 1 ) = 0 1 6 | δ 1 | d = 1 6 δ 1 + 1 ( δ 1 + 1 ) ,   Ω 2 ( δ 1 ) = 1 6 1 2 δ 1 27 80 d
= 1 δ 1 + 1 1 2 δ 1 + 1 1 6 δ 1 + 1 9 80 if 0 < δ 1 < ln ( 27 / 80 ) ln ( 1 / 6 ) 2 δ 1 δ 1 + 1 27 80 1 + 1 δ 1 + 1 δ 1 + 1 1 2 δ 1 + 1 + 1 6 δ 1 + 1 9 40 if ln ( 27 / 80 ) ln ( 1 / 6 ) δ 1 ln ( 27 / 80 ) ln ( 1 / 2 ) 9 80 1 δ 1 + 1 1 2 δ 1 + 1 1 6 δ 1 + 1 if ln ( 27 / 80 ) ln ( 1 / 2 ) < δ 1
Ω 3 ( δ 1 ) = 1 2 5 6 δ 1 53 80 d
= 1 δ 1 + 1 5 6 δ 1 + 1 1 2 δ 1 + 1 53 240 if 0 < δ 1 < ln ( 53 / 80 ) ln ( 1 / 2 ) 2 δ 1 δ 1 + 1 53 80 1 + 1 δ 1 + 1 δ 1 + 1 5 6 δ 1 + 1 + 1 2 δ 1 + 1 53 60 if ln ( 53 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 5 / 6 ) 53 240 1 δ 1 + 1 5 6 δ 1 + 1 1 2 δ 1 + 1 if ln ( 53 / 80 ) ln ( 5 / 6 ) < δ 1
and
Ω 4 ( δ 1 ) = 5 6 1 | δ 1 1 | d = 1 6 + 1 δ 1 + 1 5 6 δ 1 + 1 1 .
Proof. 
By taking the benefit of the modulus property, Lemma 1 and the pre-invexity of | T | , we have
Ω T ; ı 1 , ı 2 ; ξ ; ν ξ ( ı 2 , ı 1 ) 2 0 1 6 | δ 1 | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d + 1 6 1 2 δ 1 27 80 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d + 1 2 5 6 δ 1 53 80 T ( ı 1 + ξ ( ı 2 , ı 1 ) ) T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d + 5 6 1 | δ 1 1 | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) d ξ ( ı 2 , ı 1 ) 2 × 0 1 6 | δ 1 | ( 1 ) | T ( ı 1 ) | + | T ( ı 2 ) | + | T ( ı 1 ) | + ( 1 ) | T ( ı 2 ) | d + 1 6 1 2 δ 1 27 80 ( 1 ) | T ( ı 1 ) | + | T ( ı 2 ) | + | T ( ı 1 ) | + ( 1 ) | T ( ı 2 ) | d + 1 2 5 6 δ 1 53 80 ( 1 ) | T ( ı 1 ) | + | T ( ı 2 ) | + | T ( ı 1 ) | + ( 1 ) | T ( ı 2 ) | d + 5 6 1 | δ 1 1 | ( 1 ) | T ( ı 1 ) | + | T ( ı 2 ) | + | T ( ı 1 ) | + ( 1 ) | T ( ı 2 ) | d = ξ ( ı 2 , ı 1 ) 2 0 1 6 | δ 1 | d + 1 6 1 2 δ 1 27 80 d + 1 2 5 6 δ 1 53 80 d + 5 6 1 | δ 1 1 | d | T ( ı 1 ) | + | T ( ı 2 ) | .
After some computations, the required result can be achieved. □
Corollary 1.
Selecting δ 1 = 1 in Theorem 1,
1 80 27 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + 26 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 + 27 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 1 ξ ( ı 2 , ı 1 ) ı 1 ı 1 + ξ ( ı 2 , ı 1 ) T ( ν ) d ν 2401 ( ξ ( ı 2 , ı 1 ) ) 57600 | T ( ı 1 ) | + | T ( ı 2 ) | .
Remark 1.
Inserting ξ ı 2 , ı 1 = ı 2 ı 1 in Theorem 1, we obtain Theorem 5, which is proven in [32].
Example 1.
Let T : [ ı 1 , ı 2 ] = [ 0 , 2 ] R , given by T ( ν ) = ν 3 3 , satisfying the requirements of Theorem 1 with ξ ı 2 , ı 1 = ı 2 ı 1 , and then left-hand-side transform into the following form:
11 16 4 δ 1 3 + 12 δ 1 2 + 8 δ 1 + 24 3 ( δ 1 + 3 ) ( δ 1 + 2 ) ( δ 1 + 1 ) .
The right-hand side is given as
8 δ 1 + 1 5 δ 1 + 1 6 δ 1 + 1 1 2 2 3 if 0 < δ 1 < ln ( 53 / 80 ) ln ( 1 / 2 ) , 8 δ 1 + 1 1 2 δ 1 + 1 + 5 δ 1 + 1 6 δ 1 + 1 + δ 1 53 80 1 + 1 δ 1 1 2 199 60 if ln ( 53 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 27 / 80 ) ln ( 1 / 6 ) , 8 δ 1 + 1 1 6 δ 1 + 1 + 1 2 δ 1 + 1 + 5 δ 1 + 1 6 δ 1 + 1 + δ 1 27 80 1 + 1 δ 1 + δ 1 53 80 1 + 1 δ 1 1 2 113 30 if ln ( 27 / 80 ) ln ( 1 / 6 ) < δ 1 < ln ( 27 / 80 ) ln ( 1 / 2 ) , 8 δ 1 + 1 1 6 δ 1 + 1 + 5 δ 1 + 1 6 δ 1 + 1 + δ 1 53 80 1 + 1 δ 1 1 2 29 12 if ln ( 27 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 5 / 6 ) , 8 δ 1 + 1 1 6 δ 1 + 1 1 2 2 if ln ( 53 / 80 ) ln ( 5 / 6 ) < δ 1 .
Figure 1 clearly affirms that the left-hand-side is less than the right-hand-side of Theorem 1. This shows that the result is accurate for δ 1 ( 0 , 10 ] .
Theorem 2.
If the requirements of Lemma 1 are satisfied and the mapping | T | q , q > 1 is pre-invex on [ ı 1 , ı 1 + ξ ı 2 , ı 1 ] , then
Ω T ; ı 1 , ı 2 ; ξ ; ν ξ ( ı 2 , ı 1 ) 2 ( φ 1 ( δ 1 , p ) + φ 4 ( δ 1 , p ) ) 11 | T ( ı 1 ) | q + | T ( ı 2 ) | q 72 1 q + | T ( ı 1 ) | q + 11 | T ( ı 2 ) | q 72 1 q + ( φ 2 ( δ 1 , p ) + φ 3 ( δ 1 , p ) ) 2 | T ( ı 1 ) | q + | T ( ı 2 ) | q 9 1 q + | T ( ı 1 ) | q + 2 | T ( ı 2 ) | q 9 1 q
is valid. Here, 1 p + 1 q = 1 , Ω T ; ı 1 , ı 2 ; ξ ; ν is given by (10and
φ 1 ( δ 1 , p ) = 0 1 6 | δ 1 | p d 1 p = 1 6 δ 1 p + 1 ( δ 1 p + 1 ) 1 p ,
φ 2 ( δ 1 , p ) = 1 6 1 2 δ 1 27 80 p d 1 p , φ 3 ( δ 1 , p ) = 1 2 5 6 δ 1 53 80 p d 1 p ,
φ 4 ( δ 1 , p ) = 5 6 1 | δ 1 1 | p d 1 p .
Proof. 
By taking the benefit of modulus property, Lemma 1, Hölder’s inequality, and pre-invexity of the mapping, we obtain
Ω T ; ı 1 , ı 2 ; ξ ; ν ξ ( ı 2 , ı 1 ) 2 × 0 1 6 | δ 1 | p d 1 p 0 1 6 | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) | q d 1 q + 0 1 6 | T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) | q d 1 q + 1 6 1 2 δ 1 27 80 p d 1 p 1 6 1 2 | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) | q d 1 q + 1 6 1 2 | T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) | q d 1 q + 1 2 5 6 δ 1 53 80 p d 1 p 1 2 5 6 | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) | q d 1 q + 1 2 5 6 | T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) | q d 1 q + 5 6 1 | δ 1 1 | p d 1 p 5 6 1 | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) | q d 1 q + 5 6 1 | T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) | q d 1 q .
Since | T | q is pre-invex, then
Ω T ; ı 1 , ı 2 ; ξ ; ν ξ ( ı 2 , ı 1 ) 2 × 0 1 6 | δ 1 | p d 1 p 0 1 6 ( 1 ) | T ( ı 1 ) | q + | T ( ı 2 ) | q d 1 q + 0 1 6 | T ( ı 1 ) | q + ( 1 ) | T ( ı 2 ) | q d 1 q + 1 6 1 2 δ 1 27 80 p d 1 p 1 6 1 2 ( 1 ) | T ( ı 1 ) | q + | T ( ı 2 ) | q d 1 q + 1 6 1 2 | T ( ı 1 ) | q + ( 1 ) | T ( ı 2 ) | q d 1 q + 1 2 5 6 δ 1 53 80 p d 1 p 1 2 5 6 ( 1 ) | T ( ı 1 ) | q + | T ( ı 2 ) | q d 1 q + 1 2 5 6 | T ( ı 1 ) | q + ( 1 ) | T ( ı 2 ) | q d 1 q + 5 6 1 | δ 1 1 | p d 1 p 5 6 1 ( 1 ) | T ( ı 1 ) | q + | T ( ı 2 ) | q d 1 q + 5 6 1 | T ( ı 1 ) | q + ( 1 ) | T ( ı 2 ) | q d 1 q = ξ ( ı 2 , ı 1 ) 2 × 0 1 6 | δ 1 | p d 1 p + 5 6 1 | δ 1 1 | p d 1 p × 11 | T ( ı 1 ) | q + | T ( ı 2 ) | q 72 1 q + | T ( ı 1 ) | q + 11 | T ( ı 2 ) | q 72 1 q + 1 6 1 2 δ 1 27 80 p d 1 p + 1 2 5 6 δ 1 53 80 p d 1 p × 2 | T ( ı 1 ) | q + | T ( ı 2 ) | q 9 1 q + | T ( ı 1 ) | q + 2 | T ( ı 2 ) | q 9 1 q .
Hence, the proof is completed. □
Corollary 2.
Selecting δ 1 = 1 in Theorem 2,
1 80 27 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + 26 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 + 27 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 1 ξ ( ı 2 , ı 1 ) ı 1 ı 1 + ξ ( ı 2 , ı 1 ) T ( ν ) d ν ξ ( ı 2 , ı 1 ) × 1 6 p + 1 ( p + 1 ) 1 p 11 | T ( ı 1 ) | q + | T ( ı 2 ) | q 72 1 q + | T ( ı 1 ) | q + 11 | T ( ı 2 ) | q 72 1 q + 1 p + 1 41 240 p + 1 + 13 80 p + 1 1 p 2 | T ( ı 1 ) | q + | T ( ı 2 ) | q 9 1 q + | T ( ı 1 ) | q + 2 | T ( ı 2 ) | q 9 1 q .
Example 2.
Let T : [ ı 1 , ı 2 ] = [ 0 , 2 ] R , given by T ( ν ) = ν 3 3 , satisfying the requirements of Theorem 2 with ξ ı 2 , ı 1 = ı 2 ı 1 , then the left-hand-side transforms into the following form:
11 16 4 δ 1 3 + 12 δ 1 2 + 8 δ 1 + 24 3 ( δ 1 + 3 ) ( δ 1 + 2 ) ( δ 1 + 1 )
The right-hand-side then becomes
1 3 2 + 22 P ( δ 1 ) + Q ( δ 1 ) + 4 3 1 + 2 R ( δ 1 ) + S ( δ 1 ) if 0 < δ 1 < 10 ,
where
P ( δ 1 ) = 1 6 2 δ 1 + 1 ( 2 δ 1 + 1 ) 1 2 , Q ( δ 1 ) = 1 6 2 ( 6 δ 1 + 1 5 δ 1 + 1 ) 6 δ 1 + 1 ( δ 1 + 1 ) + 6 2 δ 1 + 1 5 2 δ 1 + 1 6 2 δ 1 + 1 ( 2 δ 1 + 1 ) 1 2 , R ( δ 1 ) = 243 6400 + 9 ( 3 δ 1 3 ) 2 δ 1 + 4 × 5 ( δ 1 + 1 ) + 3 2 δ 1 + 1 1 6 2 δ 1 + 1 ( 2 δ 1 + 1 ) 1 2 , S ( δ 1 ) = 2809 19200 + 53 ( 3 δ 1 5 δ 1 + 1 ) 2 δ 1 + 4 × 3 δ 1 + 1 × 5 ( δ 1 + 1 ) + 5 6 2 δ 1 + 1 1 2 2 δ 1 + 1 2 δ 1 + 1 1 2 .
Figure 2 clearly affirms that the left-hand-side is less than the right-hand-side of Theorem 2. This shows that the result is accurate for δ 1 ( 0 , 10 ] .
Theorem 3.
If the requirements of Lemma 1 are satisfied and the mapping | T | q , q > 1 is pre-invex on [ ı 1 , ı 1 + ξ ı 2 , ı 1 ] , then we have
Ω T ; ı 1 , ı 2 ; ξ ; ν ξ ( ı 2 , ı 1 ) 2 Ω 1 ( δ 1 ) 1 1 q Ω 1 ( δ 1 ) Ω 5 ( δ 1 ) | T ( ı 1 ) | q + Ω 5 ( δ 1 ) | T ( ı 2 ) | q 1 q + Ω 5 ( δ 1 ) | T ( ı 1 ) | q + Ω 1 ( δ 1 ) Ω 5 ( δ 1 ) | T ( ( ı 2 ) | q 1 q + Ω 2 ( δ 1 ) 1 1 q Ω 2 ( δ 1 ) Ω 6 ( δ 1 ) | T ( ı 1 ) | q + Ω 6 ( δ 1 ) | T ( ı 2 ) | q 1 q + Ω 6 ( δ 1 ) | T ( ı 1 ) | q + Ω 2 ( δ 1 ) Ω 6 ( δ 1 ) | T ( ı 2 ) | q 1 q + Ω 3 ( δ 1 ) 1 1 q Ω 3 ( δ 1 ) Ω 7 ( δ 1 ) | T ( ı 1 ) | q + Ω 7 ( δ 1 ) | T ( ı 2 ) | q 1 q + Ω 7 ( δ 1 ) | T ( ı 1 ) | q + Ω 3 ( δ 1 ) Ω 7 ( δ 1 ) | T ( ı 2 ) | q 1 q + Ω 4 ( δ 1 ) 1 1 q Ω 4 ( δ 1 ) Ω 8 ( δ 1 ) | T ( ı 1 ) | q + Ω 8 ( δ 1 ) | T ( ı 2 ) | q 1 q + Ω 8 ( δ 1 ) | T ( ı 1 ) | q + Ω 4 ( δ 1 ) Ω 8 ( δ 1 ) | T ( ı 2 ) | q 1 q ,
where Ω T ; ı 1 , ı 2 ; ξ ; ν is given by (10), and Ω 1 ( δ 1 ) , Ω 2 ( δ 1 ) , Ω 3 ( δ 1 ) , and Ω 4 ( δ 1 ) are defined in Theorem 1 and
Ω 5 ( δ 1 ) = 0 1 6 | δ 1 | d = 1 6 δ 1 + 2 ( δ 1 + 2 ) ,
Ω 6 ( δ 1 ) = 1 6 1 2 δ 1 27 80 d
= 1 δ 1 + 2 1 2 δ 1 + 2 1 6 δ 1 + 2 3 80 if 0 < δ 1 < ln ( 27 / 80 ) ln ( 1 / 6 ) δ 1 δ 1 + 2 27 80 1 + 2 δ 1 + 1 δ 1 + 2 1 2 δ 1 + 2 + 1 6 δ 1 + 2 3 64 if ln ( 27 / 80 ) ln ( 1 / 6 ) δ 1 ln ( 27 / 80 ) ln ( 1 / 2 ) 3 80 1 δ 1 + 2 1 2 δ 1 + 2 1 6 δ 1 + 2 if ln ( 27 / 80 ) ln ( 1 / 2 ) < δ 1
Ω 7 ( δ 1 ) = 1 2 5 6 δ 1 53 80 d
= 1 δ 1 + 2 5 6 δ 1 + 2 1 2 δ 1 + 2 53 360 if 0 < δ 1 < ln ( 53 / 80 ) ln ( 1 / 2 ) δ 1 δ 1 + 2 53 80 1 + 2 δ 1 + 1 δ 1 + 2 5 6 δ 1 + 2 + 1 2 δ 1 + 2 901 2880 if ln ( 53 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 5 / 6 ) 53 360 1 δ 1 + 2 5 6 δ 1 + 2 1 2 δ 1 + 2 if ln ( 53 / 80 ) ln ( 5 / 6 ) < δ 1
and
Ω 8 ( δ 1 ) = 5 6 1 | δ 1 1 | d = 11 72 + 1 δ 1 + 2 5 6 δ 1 + 2 1 .
Proof. 
By taking advantage of the power mean inequality and pre-invexity of | T | q , we obtain
Ω T ; ı 1 , ı 2 ; ξ ; ν ξ ( ı 2 , ı 1 ) 2 0 1 6 | δ 1 | d 1 1 q 0 1 6 | δ 1 | | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) | q d 1 q + 0 1 6 | δ 1 | | T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) | q d 1 q + 1 6 1 2 δ 1 27 80 d 1 1 q 1 6 1 2 δ 1 27 80 | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) | q d 1 q + 1 6 1 2 δ 1 27 80 | T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) | q d 1 q + 1 2 5 6 δ 1 53 80 d 1 1 q 1 2 5 6 δ 1 53 80 | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) | q d 1 q + 1 2 5 6 δ 1 53 80 | T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) | q d 1 q + 5 6 1 | δ 1 1 | d 1 1 q 5 6 1 | δ 1 1 | | T ( ı 1 + ξ ( ı 2 , ı 1 ) ) | q d 1 q + 5 6 1 | δ 1 1 | | T ( ı 1 + ( 1 ) ξ ( ı 2 , ı 1 ) ) | q d 1 q .
Since | T | q is pre-invex,
Ω T ; ı 1 , ı 2 ; ξ ; ν ξ ( ı 2 , ı 1 ) 2 0 1 6 | δ 1 | d 1 1 q 0 1 6 | δ 1 | ( 1 ) | T ( ı 1 ) | q + | T ( ı 2 ) | q d 1 q + 0 1 6 | δ 1 | | T ( ı 1 ) | q + ( 1 ) | T ( ı 2 ) | q d 1 q + 1 6 1 2 δ 1 27 80 d 1 1 q 1 6 1 2 δ 1 27 80 ( 1 ) | T ( ı 1 ) | q + | T ( ı 2 ) | q d 1 q + 1 6 1 2 δ 1 27 80 | T ( ı 1 ) | q + ( 1 ) | T ( ı 2 ) | q d 1 q + 1 2 5 6 δ 1 53 80 d 1 1 q 1 2 5 6 δ 1 53 80 ( 1 ) | T ( ı 1 ) | q + | T ( ı 2 ) | q d 1 q + 1 2 5 6 δ 1 53 80 | T ( ı 1 ) | q + ( 1 ) | T ( ı 2 ) | q d 1 q + 5 6 1 | δ 1 1 | d 1 1 q 5 6 1 | δ 1 1 | ( 1 ) | T ( ı 1 ) | q + | T ( ı 2 ) | q d 1 q + 5 6 1 | δ 1 1 | | T ( ı 1 ) | q + ( 1 ) | T ( ı 2 ) | q d 1 q .
Hence, the desired result is obtained. □
Corollary 3.
Let us consider δ 1 = 1 in Theorem 3, then the following corrected Euler–Maclaurin-type inequality holds:
1 80 27 T 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + 26 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 + 27 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 1 ξ ( ı 2 , ı 1 ) ı 1 ı 1 + ξ ( ı 2 , ı 1 ) T ( ν ) d ν ξ ( ı 2 , ı 1 ) 72 × 8 | T ( ı 1 ) | q + | T ( ı 2 ) | q 9 1 q + | T ( ı 1 ) | q + 8 | T ( ı 2 ) | q 9 1 q + 1601 800 1 1 q 773279 | T ( ı 1 ) | q + 379441 | T ( ı 2 ) | q 576000 1 q + 379441 | T ( ı 1 ) | q + 773279 | T ( ı 2 ) | q 576000 1 q .
Remark 2.
Inserting ξ ı 2 , ı 1 = ı 2 ı 1 in Theorem 3, we obtain Theorem 6, which is proven in [32].
Example 3.
Let T : [ ı 1 , ı 2 ] = [ 0 , 2 ] R , given by T ( ν ) = ν 3 3 , satisfying the requirements of Theorem 3 with ξ ( ı 2 , ı 1 ) = ı 2 ı 1 , then left-hand-side transforms into the following form:
11 16 4 δ 1 3 + 12 δ 1 2 + 8 δ 1 + 24 3 ( δ 1 + 3 ) ( δ 1 + 2 ) ( δ 1 + 1 )
For the right-hand-side, 3 is reduced to
A ( δ 1 ) + B ( δ 1 ) + C ( δ 1 ) + D ( δ 1 ) if 0 < δ 1 < ln ( 53 / 80 ) ln ( 1 / 2 ) , A ( δ 1 ) + B ( δ 1 ) + E ( δ 1 ) + D ( δ 1 ) if ln ( 53 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 1 / 6 ) , A ( δ 1 ) + T ( δ 1 ) + E ( δ 1 ) + D ( δ 1 ) if ln ( 27 / 80 ) ln ( 1 / 6 ) < δ 1 < ln ( 27 / 80 ) ln ( 1 / 2 ) , A ( δ 1 ) + G ( δ 1 ) + E ( δ 1 ) + D ( δ 1 ) if ln ( 27 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 5 / 6 ) , A ( δ 1 ) + G ( δ 1 ) + H ( δ 1 ) + D ( δ 1 ) if ln ( 53 / 80 ) ln ( 5 / 6 ) < δ 1
where
A ( δ 1 ) = 1 3 ( 6 ) δ 1 2 3 1 2 1 ( δ 1 + 1 ) ( δ 1 + 2 ) 1 2 + 1 δ 1 + 1 5 δ 1 + 11 δ 1 + 2 1 2 , B ( δ 1 ) = 1 60 ( 6 ) δ 1 3 1 δ 1 + 1 3 δ 1 + 1 40 9 ( 2 δ 1 ) ( δ 1 + 1 ) 40 1 2 × 1 δ 1 + 2 3 δ 1 + 2 20 3 ( 2 δ 1 ) ( δ 1 + 2 ) 20 1 2 + 1 ( δ 1 + 1 ) ( δ 1 + 2 ) 2 3 δ 1 + 2 10 ( δ 1 + 3 ) 3 ( 2 δ 1 ) ( δ 1 + 1 ) ( δ 1 + 2 ) 10 ( 5 δ 1 + 11 ) 1 2 , C ( δ 1 ) = 4 1 δ 1 + 1 5 6 δ 1 + 1 1 2 δ 1 + 1 53 240 1 2 1 δ 1 + 2 5 6 δ 1 + 2 1 2 δ 1 + 2 53 360 1 2 + 5 δ 1 1 12 δ 1 + 2 ( δ 1 + 1 ) ( δ 1 + 2 ) 25 ( 2 δ 1 + 2 ) ( δ 1 + 7 ) 6 5 δ 1 53 ( 2 δ 1 ) ( δ 1 + 1 ) ( δ 1 + 2 ) + 180 ( δ 1 + 3 ) 1 2 , D ( δ 1 ) = 1 3 3 ( 6 δ 1 ) 1 δ 1 + 1 5 5 6 δ 1 + ( δ 1 5 ) 1 2 × 1 δ 1 + 2 2 ( 5 δ 1 + 2 ) + 6 δ 1 ( 11 δ 1 50 ) 1 2 + 1 ( δ 1 + 1 ) ( δ 1 + 2 ) 2 ( 5 δ 1 + 1 ) ( δ 1 + 7 ) + 6 δ 1 ( δ 1 7 ) ( δ 1 + 10 ) 1 2 , E ( δ 1 ) = 1 60 5 6 δ 1 + 1 1 δ 1 + 1 4 ( 5 δ 1 + 2 ) 2 ( 3 δ 1 ) ( 53 ( 2 δ 1 ) 30 ) + 53 ( 6 δ 1 ) 3 53 80 1 δ 1 2 δ 1 1 2 × 120 1 δ 1 + 2 1 2 δ 1 + 2 + 5 6 δ 1 + 2 + δ 1 53 80 1 + δ 1 2 901 2880 1 2 + 5 1 ( δ 1 + 1 ) ( δ 1 + 2 ) 5 12 δ 1 25 ( 2 δ 1 + 4 ) ( δ 1 + 7 ) + 6 5 δ 1 720 ( δ 1 + 3 ) 1643 ( 2 δ 1 ) ( δ 1 + 1 ) ( δ 1 + 2 ) 1908 δ 1 53 80 2 δ 1 ( δ 1 + 1 ) 2 1 4 δ 1 53 5 1 δ 1 ( δ 1 + 2 ) 1 2 T ( δ 1 ) = 1 60 6 1 δ 1 + 1 1 6 δ 1 20 + 3 δ 1 + 1 ( 20 9 ( 2 δ 1 ) ) + δ 1 3 4 + 3 δ 1 ( 80 1 δ 1 ) 27 1 2 × 1 δ 1 + 2 2 δ 1 4 45 + 5 3 δ 1 270 1 2 + 1 ( δ 1 + 1 ) ( δ 1 + 2 ) 1 6 δ 1 80 ( 5 δ 1 + 11 ) + 3 δ 1 + 2 80 ( δ 1 + 3 ) 57 ( 2 δ 1 ) ( δ 1 + 1 ) ( δ 1 + 2 ) 972 δ 1 27 80 2 δ 1 ( δ 1 + 1 ) 2 1 4 δ 1 27 5 1 δ 1 ( δ 1 + 2 ) 1 2 G ( δ 1 ) = 1 60 ( 6 ) δ 1 3 1 δ 1 + 1 3 δ 1 + 1 9 ( 2 δ 1 ) ( δ 1 + 1 ) 40 + 40 1 2 1 δ 1 + 2 3 δ 1 + 2 20 + 3 ( 2 δ 1 ) ( δ 1 + 2 ) + 20 1 2 + 1 ( δ 1 + 1 ) ( δ 1 + 2 ) 2 3 δ 1 + 2 3 ( 2 δ 1 ) ( δ 1 + 1 ) ( δ 1 + 2 ) 10 ( δ 1 + 3 ) + 10 ( 5 δ 1 + 11 ) 1 2 , H ( δ 1 ) = 4 1 δ 1 + 1 1 2 δ 1 + 1 5 6 δ 1 + 1 + 53 240 1 2 × 1 δ 1 + 2 1 2 δ 1 + 2 5 6 δ 1 + 2 + 53 360 1 2 + 5 δ 1 1 12 δ 1 + 2 ( δ 1 + 1 ) ( δ 1 + 2 ) 6 5 δ 1 53 ( 2 δ 1 ) ( δ 1 + 1 ) ( δ 1 + 2 ) + 180 ( δ 1 + 3 ) 25 ( 2 δ 1 + 2 ) ( δ 1 + 7 ) 1 2 .
Figure 3 clearly affirms that the left-hand-side is less than the right-hand-side of Theorem 3. This shows that the result is accurate for δ 1 [ 0 , 10 ] .

4. Applications

4.1. Application to Means

Here, we provide novel applications of our primary findings to linear combinations of means. Let us revisit some well-known binary means of any two non-negative numbers:
  • A ( ı 1 , ı 2 ) = ı 1 + ı 2 2 .
  • A w ( w 1 , w 2 ; ı 1 , ı 2 ) = w 1 ı 1 + w 2 ı 2 w 1 + w 2 .
  • L n ( ı 1 , ı 2 ) = ı 2 n + 1 ı 1 n + 1 ( ı 2 ı 1 ) ( n + 1 ) 1 n , n Z { 0 , 1 } .
Proposition 1.
Let ı 1 , ı 2 R , ı 1 < ı 2 and n N , n 2 . Then,
1 80 9 A w 3 ( 5 , 1 ; ı 1 , ı 2 ) + 26 3 A 3 ( ı 1 , ı 2 ) + 9 A w 3 ( 1 , 5 ; ı 1 , ı 2 ) 1 3 L 3 3 ( ı 1 , ı 2 ) 2401 ξ ( ı 2 , ı 1 ) 57600 | ı 1 2 | + | ı 2 2 | .
Proof. 
The proof is obvious from Theorem 1 with ξ ı 2 , ı 1 = ı 2 ı 1 for T ( ν ) = ν 3 3 , ν R and δ 1 = 1 . □
Proposition 2.
Let ı 1 , ı 2 R , ı 1 < ı 2 and n N , n 2 . Then,
1 80 9 A w 3 ( 5 , 1 ; ı 1 , ı 2 ) + 26 3 A 3 ( ı 1 , ı 2 ) + 9 A w 3 ( 1 , 5 ; ı 1 , ı 2 ) 1 3 L 3 3 ( ı 1 , ı 2 ) ξ ( ı 2 , ı 1 ) × 1 6 p + 1 ( p + 1 ) 1 p 11 | ı 1 2 | q + | ı 2 2 | q 72 1 q + | ı 1 2 | q + 11 | ı 2 2 | q 72 1 q + 1 p + 1 41 240 p + 1 + 13 80 p + 1 1 p 2 | ı 1 2 | q + | ı 2 2 | q 9 1 q + | ı 1 2 | q + 2 | ı 2 2 | q 9 1 q .
Proof. 
The proof is obvious from Theorem 2 with ξ ı 2 , ı 1 = ı 2 ı 1 for T ( ν ) = ν 3 3 , ν R and δ 1 = 1 . □

4.2. Applications to Error Bounds

In the current portion of the study, we establish error bounds for the composite-corrected Euler–Maclaurin procedure. Let P be a division of [ ı 1 , ı 2 ] such that ı 1 = u 0 < u 1 < u 2 < < u i < u i + 1 < < u n = ı 2 , where [ u i , u i + 1 ] .
  • Taking the quadrature scheme into consideration,
ı 1 ı 2 T ( u ) d u = Q ( T , P ) + E ( T , P ) ,
where
Q ( T , P ) = i = 0 n 1 ( u i + 1 u i ) 80 27 T 5 u i + u i + 1 6 + 26 T u i + u i + 1 2 + 27 T u i + 5 u i + 1 6 ,
with E ( T , P ) denoting the associated approximation error.
Proposition 3.
Let T be as in Theorem 1; then, we have
| E ( T , P ) | i = 0 n 1 2401 ( u i + 1 u i ) 2 57600 | T ( u i ) | + | T ( u i + 1 ) | .
Proof. 
By applying Theorem 1 with δ 1 = 1 and ξ ı 2 , ı 1 = ı 2 ı 1 to [ u i , u i + 1 ] ( i 0 , 1 , 2 , , n 1 ) , multiplying the result by ı 2 ı 1 and then taking the sum from i = 0 to n 1 , we achieve our desired result. □
Proposition 4.
Let T be as in Theorem 2, then we have
| E ( T , P ) | i = 0 n 1 ( u i + 1 u i ) 2 1 6 p + 1 ( p + 1 ) 1 p 11 | T ( u i ) | q + | T ( u i + 1 ) | q 72 1 q + | T ( u i ) | q + 11 | T ( u i + 1 ) | q 72 1 q + 1 p + 1 41 240 p + 1 + 13 80 p + 1 1 p 2 | T ( u i ) | q + | T ( u i + 1 ) | q 9 1 q + | T ( u i ) | q + 2 | T ( u i + 1 ) | q 9 1 q .
Proof. 
By applying Theorem 2 with δ 1 = 1 and ξ ı 2 , ı 1 = ı 2 ı 1 on [ u i , u i + 1 ] ( i 0 , 1 , 2 , , n 1 ) , and multiplying the result by ı 2 ı 1 , the sum is taken from i = 0 to i = n 1 . □

4.3. Applications to Matrices

Next, we explain the impacts of our created outcomes in matrices. In this setting, C δ 1 indicates the collection of δ 1 × δ 1 complex matrices, M δ 1 symbolizes the algebra of all δ 1 × δ 1 complex matrices, and M δ 1 + refers to the subset of M δ 1 comprising strictly positive matrices. A matrix A M δ 1 + satisfies A w , w > 0 for every non-zero vector ϖ C δ 1 . The theory of matrices and convexity was consolidated by Sababheh in [33].
Proposition 5.
By using Theorem 2, we have
1 80 ( 27 A 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 X B 6 ( 1 ı 1 ) ξ ( ı 2 , ı 1 ) 6 + A 6 ( 1 ı 1 ) + ξ ( ı 2 , ı 1 ) 6 X B 6 ı 1 + ξ ( ı 2 , ı 1 ) 6 + 26 A 2 ı 1 + ξ ( ı 2 , ı 1 ) 2 X B 2 ( 1 ı 1 ) ξ ( ı 2 , ı 1 ) 2 + A 2 ( 1 ı 1 ) ξ ( ı 2 , ı 1 ) 2 X B 2 ( 1 ı 1 ) ξ ( ı 2 , ı 1 ) 2 + 27 A 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 X B 6 ( 1 ı 1 ) 5 ξ ( ı 2 , ı 1 ) 6 + A 6 ( 1 ı 1 ) + 5 ξ ( ı 2 , ı 1 ) 6 X B 6 ı 1 + 5 ξ ( ı 2 , ı 1 ) 6 ) Γ ( δ 1 + 1 ) 2 ( ξ ( ı 2 , ı 1 ) ) δ 1 ( J ( ı 1 + ξ ( ı 2 , ı 1 ) ) δ 1 A ı 1 X B 1 ı 1 + A 1 ı 1 X B ı 1 + J ı 1 + δ 1 A ı 1 + ξ ( ı 2 , ı 1 ) X B 1 ( ı 1 + ξ ( ı 2 , ı 1 ) ) + A 1 ( ı 1 + ξ ( ı 2 , ı 1 ) ) X B ı 1 + ξ ( ı 2 , ı 1 ) ) ξ ( ı 2 , ı 1 ) M 1 6 1 q φ 1 ( δ 1 , p ) + φ 4 ( δ 1 , p ) + 1 3 1 q φ 2 ( δ 1 , p ) + φ 3 ( δ 1 , p )
where M > 0 ; furthermore, φ 1 ( δ 1 , p ) , φ 2 ( δ 1 , p ) , φ 3 ( δ 1 , p ) , and φ 4 ( δ 1 , p ) are defined in Theorem 2.

4.4. Iterative Methods

We provide applications of our conclusions in nonlinear analysis in the next section of the paper. Examine the following nonlinear equation:
T ( ν ) = 0 .
One exciting area of study is the computation of roots of nonlinear equations. In the recent literature, several techniques have been discussed, such as quadrature formulas, Taylor’s expansion, interpolation, and decomposition techniques. We present an application of our proposed result through an iterative process. Newton’s integral representation is given as
T ( ν ) = T ( ν n ) + ν n ν T ( u ) d u .
Iterative Scheme 1.
For any [ ı 1 , ı 2 ] R , such that T ( ν ) = 0 is a nonlinear equation, then
ν n + 1 = ν n 80 T ( ν n ) 27 T 5 ν n + y n 6 + 26 T ν n + y n 2 + 27 T ν n + 5 y n 6 ,
where
y n = ν n T ( ν n ) T ( ν n ) .
Proof. 
From (11), we acquire our result. □
Now, we provide the order of convergence of Iterative Scheme 1.
Theorem 4.
Let T be a differentiable mapping and ν I be zero of order one. If ν approaches δ 1 , then Iterative Scheme 1 has an order of convergence of three.
Proof. 
Let δ 1 be a zero of differentiable mapping T , by expanding T ( ν n ) and T ( ν n ) about δ 1 , we have
T ( ν n ) = T ( δ 1 ) [ e n + c 2 e n 2 + c 3 e n 3 + c 4 e n 4 + ] ,
and
T ( ν n ) = T ( δ 1 ) [ 1 + 2 c 2 e n + 3 c 3 e n 2 + 4 c 4 e n 3 + 5 c 4 e n 4 + ] ,
where c k = 1 k ! T k ( δ 1 ) T ( δ 1 ) , k = 1 , 2 , 3 , , where e n = ν n δ 1 . Now, from (17) and (18), we can obtain the following:
y n = ν n T ( ν n ) T ( ν n ) = [ δ 1 + c 2 e n 2 + 2 ( c 3 c 2 2 ) e n 3 + ( 7 c 2 c 3 + 4 c 2 3 + 3 c 4 ) e n 4 + ] .
27 T 5 ν n + y n 6 = T ( δ 1 ) 27 c 1 + 45 c 1 c 2 e n + 27 c 1 25 c 3 12 + c 2 2 3 e n 2 + 27 c 1 125 c 4 54 + 5 c 2 c 3 6 + 2 c 2 c 2 2 3 + c 3 3 e n 3 + .
26 T ν n + y n 2 = T ( δ 1 ) 26 c 1 + 26 c 1 c 2 e n + 26 c 1 3 c 3 4 + c 2 2 e n 2 + 26 c 1 c 4 2 + 3 c 2 c 3 2 + 2 c 2 c 2 2 + c 3 e n 3 + .
27 T ν n + 5 y n 6 = T ( δ 1 ) 27 c 1 + 9 c 1 c 2 e n + 27 c 1 c 3 12 + 5 c 2 2 3 e n 2 + 27 c 1 c 4 54 + 5 c 2 c 3 6 + 2 c 2 5 c 2 2 3 + 5 c 3 3 e n 3 + .
Inserting the values of (19)–(22) in (16), we achieve
ν n + 1 = c 2 2 c 3 40 e n 3 + O ( e n 4 ) .
Hence, the result is acquired. □

4.5. Examples and Visual Explanation of Iterative Scheme 1

First, we investigate a number of physical scenarios in the context of Iterative Scheme 1.
  • In the first example, we investigate the topic linked to the plug flow of Casson fluids in blood using the Rheology and Fractional Nonlinear Equations Model [34]. The decline in flow rate can be calculated by the following equation:
    T ( ν ) = 1 16 7 ν + 4 3 ν 1 21 ν 4 G .
    Here, we pick G = 0.4 , and by picking the initial value ν 0 = 0.1 , Iterative Scheme 1 with ξ = 1 5 predicts the desired root ν = 0.10469865153654822811 in the third iteration.
  • We look into the issue of porosity in biogels ([34]). The subsequent equation illustrates the dependence between pressure and velocity:
    T ( ν ) = e ν 3 20 κ ( 1 ν ) 2 ,
    where e = 10 8 , κ = 0.3655 , and ν 0 = 2 are the initial values. Then, Iterative Scheme 1 with ξ = 1 5 determines the root ν = 1.0000370035782964267 in 13 iterations.
In order to illustrate the effectiveness of our offered scheme, we conducted an analysis to compare it with traditional techniques such as Newton’s method (NM) [35], Abbasbandy’s method (AM) [36], Halley’s method (HM) [35], and Chun’s method (CM) [37]. In order to proceed, consider the following test mappings:
  • T ( ν ) = ν 3 + 4 ν 2 15 .
  • T ( ν ) = x e ν 2 sin 2 ν + 3 cos ν + 5 .
  • T ( ν ) = 10 ν e ν 2 1 .
  • T ( ν ) = e ν + cos ν .
We fixed the tolerance of ϵ = 10 15 and
  • | ν n + 1 ν n | < ϵ ;
  • | T ( ν n + 1 ) | < ϵ .
The numerical outcomes were generated utilizing an Intel(R) Core(TM) i5 CPU at 1.60 GHz and 16 GB RAM. Maple 2020 was utilized for coding, with Matlab 2021 for visual depiction. After performing numerical tests on software, we presented tabular depictions of strategies for the above listed examples.
The above Table 1 provides a detailed comparative analysis of different non-linear examples for various methods.

4.6. Basins of Attraction

Here, we briefly describe Iterative Scheme 1 through the basin of attraction and some illustrations corresponding to CPU time to generate the basin of attractions. We deploy our proposed algorithm on [ 2 , 2 ] × [ 2 , 2 ] with a 2000 × 2000 point grid by fixing the tolerance | S ( γ n ) | < 1 × 10 3 , and the maximum number of iterations is 20. In addition, we present the probability distributions of the algorithm. The process of obtaining the basins of attraction required several iterations. The red line in the plots indicate the most probable number of iterations. For this purpose, we consider the following examples:
The Figure 4a,b provide the basin of attractions and the probability distribution for γ 2 1 .
The Figure 5a,b provide the basin of attractions and the probability distribution for γ 3 1 .
The Figure 6a,b provide the basin of attractions and the probability distribution for γ 3 γ .
The Figure 7a,b provide the basin of attractions and the probability distribution for γ 4 1 .
The Figure 8a,b provide the basin of attractions and the probability distribution for γ 5 1 .
Now, we present a visual of cumulative CPU time for the basin of attraction computation for each example and a tabular form of cumulative CPU times for each function across five iterations.
The above Figure 9 illustrates the comparison of CPU time taken across iterations.
The above Table 2 presenting the cumulative CPU time analysis depending of different nonlinear examples.

5. Conclusions

In the current article, we have developed some new generic Euler-corrected integral inequalities through RL fractional operators and pre-invex mappings. It is a large space of functions containing convex and several non-convex function classes. It is worth mentioning that our results are generic in nature because by substituting bi-mapping ξ and δ 1 such that ξ ı 2 , ı 1 = ı 2 ı 1 , R λ , ρ ϵ ( ı 2 ı 1 ) ( Raina s function ) , R ( ϕ , ψ , η ; ı 2 ı 1 ) ( hypergeometric function ) and ξ ı 2 , ı 1 = R ϕ ( ı 2 ı 1 ) ( Mittag - Leffler function ) , we obtain the inequalities for various integral inequalities of Maclaurin-type for convex mappings, generalized convexity involving Raina’s function, and hypergeometric functions, respectively. Moreover, through examples, we conclude that Theorem 3 provides the better estimation compared to Theorems 1 and 2. From our proposed identity and pre-invex mappings, several bounds can be obtained by utilizing Young’s inequality, improved Hölder’s inequality, improved inequality, and other classes of convexity such as strong convexity, uniform convexity, and log convex mappings. In the future, we will try to obtain some sharp bounds for twice or higher-order differentiable convex functions within classical and fractional integral operators. One of the important targets is to investigate this inequality through quantum calculus. We hope that researchers can use the ideas and strategies we have used to reach our conclusions about corrected Euler–Maclaurin-type inequalities via RL fractional integrals to open up new directions for further research in this area.

Author Contributions

Conceptualization, Q.L., R., M.U.A., M.Z.J., L.C. and B.M.; methodology, M.U.A., R., M.Z.J., L.C. and B.M.; software, Q.L., R., M.U.A., M.Z.J., L.C. and B.M.; validation, Q.L., R., M.U.A., M.Z.J., L.C. and B.M.; formal analysis, M.U.A., M.Z.J., L.C. and B.M.; investigation, Q.L., R., M.U.A., M.Z.J., L.C. and B.M.; writing—original draft preparation, R. and M.Z.J.; writing—review and editing, Q.L., R., M.U.A., B.B.-M., M.Z.J., L.C. and B.M.; visualization, Q.L., R., M.U.A., M.Z.J. and L.C.; supervision, M.U.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The original contributions presented in this study are included in the article, further inquiries can be directed to the corresponding author.

Acknowledgments

The authors are thankful to the editor and the anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Ben-Israel, A.; Mond, B. What is invexity? ANZIAM J. 1986, 28, 1–9. [Google Scholar] [CrossRef]
  2. Weir, T.; Mond, B. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef]
  3. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef]
  4. Matloka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
  5. Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite-Hadamard inequalities for h-preinvex functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
  6. Ozcan, S. Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Math. 2020, 5, 1505–1518. [Google Scholar] [CrossRef]
  7. Lakhdari, A.; Meftah, B. Some fractional weighted trapezoid type inequalities for preinvex functions. Int. J. Nonlinear Anal. Appl. 2022, 13, 3567–3587. [Google Scholar]
  8. Tariq, M.; Shaikh, A.A.; Sahoo, S.K.; Ahmad, H.; Sitthiwirattham, T.; Reunsumrit, J. New integral inequalities via generalized preinvex functions. Axioms 2021, 10, 296. [Google Scholar] [CrossRef]
  9. Meftah, B. New integral inequalities for s-preinvex functions. Int. J. Nonlinear Anal. Appl. 2017, 8, 331–336. [Google Scholar]
  10. Du, T.S.; Liao, J.G.; Li, Y.J. Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3112–3126. [Google Scholar] [CrossRef]
  11. Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
  12. Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
  13. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  14. Hyder, A.A.; Barakat, M.A.; Fathallah, A. Enlarged integral inequalities through recent fractional generalized operators. J. Inequalities Appl. 2022, 2022, 95. [Google Scholar] [CrossRef]
  15. Hyder, A.A.; Barakat, M.A.; Soliman, A.H. A new class of fractional inequalities through the convexity concept and enlarged Riemann-Liouville integrals. J. Inequalities Appl. 2023, 2023, 137. [Google Scholar] [CrossRef]
  16. Sarikaya, M.Z.; Ertugral, F. On the generalized Hermite-Hadamard inequalities. Ann. Univ.-Craiova-Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
  17. Dragomir, S.S.; Agarwal, R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
  18. Alomari, M.W. A companion of the generalized trapezoid inequality and applications. J. Math. Appl. 2013, 36, 5–15. [Google Scholar]
  19. Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
  20. Dragomir, S.S. On the midpoint quadrature formula for mappings with bounded variation and applications. Kragujev. J. Math. 2000, 22, 13–19. [Google Scholar]
  21. Set, E.; Akdemir, A.O.; Ozdemir, E.M. Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
  22. Zhu, W.S.; Meftah, B.; Xu, H.; Jarad, F.; Lakhdari, A. On parameterized inequalities for fractional multiplicative integrals. Demonstr. Math. 2024, 57, 20230155. [Google Scholar] [CrossRef]
  23. Hussain, S.; Khalid, J.; Chu, Y.M. Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Math. 2020, 5, 5859–5883. [Google Scholar] [CrossRef]
  24. Saleh, W.; Lakhdari, A.; Abdeljawad, T.; Meftah, B. On fractional biparameterized Newton-type inequalities. J. Inequalities Appl. 2023, 2023, 122. [Google Scholar] [CrossRef]
  25. Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 2000, 891030. [Google Scholar] [CrossRef]
  26. Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y.M. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions. Adv. Differ. Equations 2021, 2021, 1–21. [Google Scholar] [CrossRef]
  27. Bin-Mohsin, B.; Javed, M.Z.; Awan, M.U.; Khan, A.G.; Cesarano, C.; Noor, M.A. Exploration of quantum Milne-Mercer-type inequalities with applications. Symmetry 2023, 15, 1096. [Google Scholar] [CrossRef]
  28. You, X.; Hezenci, F.; Budak, H.; Kara, H. New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Math. 2022, 7, 3959–3971. [Google Scholar] [CrossRef]
  29. Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Courier Corporation: North Chelmsford, MA, USA, 2007. [Google Scholar]
  30. Franjić, I.; Pećarić, J. Corrected Euler-Maclaurin’s formulae. Rend. Del Circ. Mat. Palermo 2005, 54, 259–272. [Google Scholar]
  31. Hezenci, F.; Budak, H. Fractional Euler-Maclaurin-type inequalities for various function classes. Comput. Appl. Math. 2024, 43, 261. [Google Scholar] [CrossRef]
  32. Hezenci, F.; Budak, H. Some Riemann-Liouville fractional integral inequalities of corrected Euler-Maclaurin-type. J. Anal. 2024, 32, 1309–1330. [Google Scholar] [CrossRef]
  33. Sababheh, M. Convex functions and means of matrices. Math. Inequal. Appl. 2017, 20, 29–47. [Google Scholar] [CrossRef]
  34. Fournier, R.L. Basic Transport Phenomena in Biomedical Engineering; Taylor & Francis: New York., NY, USA, 2007. [Google Scholar]
  35. Burden, R.K.; Faires, J.D. Numerical Analysis, 9th ed.; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2011. [Google Scholar]
  36. Abbasbandy, S. Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 2003, 145, 887–893. [Google Scholar] [CrossRef]
  37. Chun, C. Iterative methods improving Newton’s method by the decomposition method. Comput. Math. Appl. 2005, 50, 1559–1568. [Google Scholar] [CrossRef]
Figure 1. Visuals of both sides of Theorem 1 based on δ 1 are plotted with Mathematica. (a) Graph with interval 0 < δ 1 < ln ( 53 / 80 ) ln ( 1 / 2 ) . (b) Graph with interval ln ( 53 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 27 / 80 ) ln ( 1 / 6 ) . (c) Graph with interval ln ( 27 / 80 ) ln ( 1 / 6 ) < δ 1 < ln ( 27 / 80 ) ln ( 1 / 2 ) . (d) Graph with interval ln ( 27 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 5 / 6 ) . (e) Graph with interval ln ( 53 / 80 ) ln ( 5 / 6 ) < δ 1 .
Figure 1. Visuals of both sides of Theorem 1 based on δ 1 are plotted with Mathematica. (a) Graph with interval 0 < δ 1 < ln ( 53 / 80 ) ln ( 1 / 2 ) . (b) Graph with interval ln ( 53 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 27 / 80 ) ln ( 1 / 6 ) . (c) Graph with interval ln ( 27 / 80 ) ln ( 1 / 6 ) < δ 1 < ln ( 27 / 80 ) ln ( 1 / 2 ) . (d) Graph with interval ln ( 27 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 5 / 6 ) . (e) Graph with interval ln ( 53 / 80 ) ln ( 5 / 6 ) < δ 1 .
Fractalfract 08 00734 g001
Figure 2. Visual of both sides of Theorem 2 based on δ 1 are plotted in Mathematica.
Figure 2. Visual of both sides of Theorem 2 based on δ 1 are plotted in Mathematica.
Fractalfract 08 00734 g002
Figure 3. Graph of both sides of Theorem 3 in Example 3, depending on δ 1 , computed and plotted with Mathematica. (a) Graph with interval 0 < δ 1 < ln ( 53 / 80 ) ln ( 1 / 2 ) . (b) Graph with interval ln ( 53 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 1 / 6 ) . (c) Graph with interval ln ( 27 / 80 ) ln ( 1 / 6 ) < δ 1 < ln ( 27 / 80 ) ln ( 1 / 2 ) . (d) Graph with interval ln ( 27 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 5 / 6 ) . (e) Graph with interval ln ( 53 / 80 ) ln ( 5 / 6 ) < δ 1 .
Figure 3. Graph of both sides of Theorem 3 in Example 3, depending on δ 1 , computed and plotted with Mathematica. (a) Graph with interval 0 < δ 1 < ln ( 53 / 80 ) ln ( 1 / 2 ) . (b) Graph with interval ln ( 53 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 1 / 6 ) . (c) Graph with interval ln ( 27 / 80 ) ln ( 1 / 6 ) < δ 1 < ln ( 27 / 80 ) ln ( 1 / 2 ) . (d) Graph with interval ln ( 27 / 80 ) ln ( 1 / 2 ) δ 1 ln ( 53 / 80 ) ln ( 5 / 6 ) . (e) Graph with interval ln ( 53 / 80 ) ln ( 5 / 6 ) < δ 1 .
Fractalfract 08 00734 g003
Figure 4. (a) is the basin of attraction for γ 2 1 and (b) illustrates the probability distributions.
Figure 4. (a) is the basin of attraction for γ 2 1 and (b) illustrates the probability distributions.
Fractalfract 08 00734 g004
Figure 5. (a) is the basin of attraction for γ 3 1 and (b) illustrates the probability distributions.
Figure 5. (a) is the basin of attraction for γ 3 1 and (b) illustrates the probability distributions.
Fractalfract 08 00734 g005
Figure 6. (a) is the basin of attraction for γ 3 γ and (b) illustrates the probability distributions.
Figure 6. (a) is the basin of attraction for γ 3 γ and (b) illustrates the probability distributions.
Fractalfract 08 00734 g006
Figure 7. (a) is the basin of attraction for γ 4 1 and (b) illustrates the probability distributions.
Figure 7. (a) is the basin of attraction for γ 4 1 and (b) illustrates the probability distributions.
Fractalfract 08 00734 g007
Figure 8. (a) is the basin of attraction for γ 5 1 and (b) illustrates the probability distributions.
Figure 8. (a) is the basin of attraction for γ 5 1 and (b) illustrates the probability distributions.
Fractalfract 08 00734 g008
Figure 9. Cumulative CPU time for basin of attraction computation.
Figure 9. Cumulative CPU time for basin of attraction computation.
Fractalfract 08 00734 g009
Table 1. Numerical outcomes of above mentioned examples.
Table 1. Numerical outcomes of above mentioned examples.
T ( ν ) Methods ν 0 IT ν n T ( ν n ) δ
ν 3 + 4 ν 2 15 NM25 1.6319808055660635175 0 4.77035 × 10 14
AM24 1.6319808055660635175 00
HM24 1.6319808055660635175 00
CM24 1.6319808055660635175 00
ALG24 1.6319808055660635175 00
x e ν 2 sin 2 ν + 3 cos ν + 5 NM 1 6 1.2076478271309189270 4.0 × 10 19 7.58 × 10 17
AM 1 5 1.2076478271309189270 4.0 × 10 19 0
HM 1 4 1.2076478271309189270 4.0 × 10 19 0
CM 1 5 1.2076478271309189270 4.0 × 10 19 0
ALG 1 5 1.2076478271309189270 4.0 × 10 19 0
10 ν e ν 2 1 NM 1.8 5 1.6796306104284499407 9 × 10 20 4.7395 × 10 15
AM 1.8 4 1.6796306104284499407 9 × 10 20 1.0 × 10 19
HM 1.8 4 1.6796306104284499407 9 × 10 20 0
CM 1.8 4 1.6796306104284499407 2.0 × 10 19 0
ALG 1.8 4 1.6796306104284499407 9 × 10 20 0
e ν + cos ν NM24 1.7461395304080124177 6.0 × 10 20 1.611907606 × 10 19
AM24 1.7461395304080124177 6 × 10 20 1.0 × 10 19
HM24 1.7461395304080124176 6.0 × 10 20 1.0 × 10 19
CM23 1.7461395304080124177 6 × 10 20 4.63 × 10 17
ALG24 1.7461395304080124177 6 × 10 20 1.0 × 10 19
Table 2. Cumulative CPU times for each function across iterations.
Table 2. Cumulative CPU times for each function across iterations.
IT γ 2 1 γ 3 1 γ 3 x γ 4 + 1 γ 5 1
21.09591.52261.44172.13512.395
42.25093.07363.05284.31574.7046
63.13934.40264.29226.35447.0545
84.03825.76015.27438.34089.2717
105.17527.14216.213610.45911.447
125.17528.43357.332312.46613.579
145.17529.61828.537414.45115.722
165.175210.9949.600716.49717.941
185.175212.34310.61618.44520.117
205.175213.64911.55520.48222.357
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liu, Q.; Rukhsar; Awan, M.U.; Bin-Mohsin, B.; Javed, M.Z.; Ciurdariu, L.; Meftah, B. Bridging Pre-Invex Mappings and Fractional Integrals: A Pathway to Iterative Schemes via Error Boundaries of Maclaurin’s Rule. Fractal Fract. 2024, 8, 734. https://doi.org/10.3390/fractalfract8120734

AMA Style

Liu Q, Rukhsar, Awan MU, Bin-Mohsin B, Javed MZ, Ciurdariu L, Meftah B. Bridging Pre-Invex Mappings and Fractional Integrals: A Pathway to Iterative Schemes via Error Boundaries of Maclaurin’s Rule. Fractal and Fractional. 2024; 8(12):734. https://doi.org/10.3390/fractalfract8120734

Chicago/Turabian Style

Liu, Qi, Rukhsar, Muhammad Uzair Awan, Bandar Bin-Mohsin, Muhammad Zakria Javed, Loredana Ciurdariu, and Badreddine Meftah. 2024. "Bridging Pre-Invex Mappings and Fractional Integrals: A Pathway to Iterative Schemes via Error Boundaries of Maclaurin’s Rule" Fractal and Fractional 8, no. 12: 734. https://doi.org/10.3390/fractalfract8120734

APA Style

Liu, Q., Rukhsar, Awan, M. U., Bin-Mohsin, B., Javed, M. Z., Ciurdariu, L., & Meftah, B. (2024). Bridging Pre-Invex Mappings and Fractional Integrals: A Pathway to Iterative Schemes via Error Boundaries of Maclaurin’s Rule. Fractal and Fractional, 8(12), 734. https://doi.org/10.3390/fractalfract8120734

Article Metrics

Back to TopTop