The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces
Abstract
:1. Introduction
2. Preliminaries and Notations
3. Existence of Solutions for Problem (1)
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernard, B.; Aneel, T. Dynamical Systems Coupled with Monotone Set-Valued Operators: Formalisms, Applications, Well-Posedness, and Stability. Siam Rev. 2020, 62, 3–129. [Google Scholar]
- Smirnov, G.V. Introduction to the Theory of Differential Inclusions; University of Porto, Porto, Portugal Product Code: GSM/41; American Mathematical Society: Lowcountry, RI, USA, 2002. [Google Scholar]
- Etemad, S.; Avci, I.; Kumar, P.; Baleanu, D.; Rezapour, S. Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos Solitons Fractals 2022, 162, 112511. [Google Scholar] [CrossRef]
- Khana, H.; Alam, K.; Gulzar, H.; Etemad, S.; Rezapour, S. A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations. Math. Comput. Simul. 2022, 198, 455–473. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Baleanu, D.; Lopes, A.M. Handbook of Fractional Calculus with Applications: Applications in Engineering, Life and Social Sciences, Part A; De Gruyter Reference: De Gruyter, Berlin, 2019; Volume 7. [Google Scholar]
- Lazopoulos, K.-A.; Lazopoulos, A.K. Fractional vector calculus and fluid mechanics. Mech. Behav. Mater. 2017, 26, 43–54. [Google Scholar] [CrossRef]
- Douglas, J.F. Some applications of fractional calculus to polymer science. Adv. Chem. Phys. 1997, 102, 121–191. [Google Scholar]
- Agur, Z.; Cojocaru, L.; Mazaur, G.; Anderson, R.M.; Danon, Y.L. Pulse mass measles vaccination across age shorts. Proc. Natl. Acad. Sci. USA 1993, 90, 11698–11702. [Google Scholar] [CrossRef]
- Ballinger, G.; Liu, X. Boundedness for impulsive delay differential equations and applications in populations growth models. Nonlinear Anal. TMA 2003, 53, 1041–1062. [Google Scholar] [CrossRef]
- Kevin, E.M. Church, Applications of Impulsive Differential Equations to the Control of Malaria Outbreaks and Introduction to Impulse Extension Equations: A General Framework to Study the Validity of Ordinary Differential Equation Models with Discontinuities in State, Corpus ID: 125227011, Mathematics, Medicine, Environmental Science. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2014. [Google Scholar] [CrossRef]
- Al Nuwairan, M.; Ibrahim, A.G. Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces. AIMS Math. 2023, 8, 11752–11780. [Google Scholar] [CrossRef]
- Benchohra, M.; Karapınar, E.; Lazreg, J.E.; Salim, A. Fractional Differential Equations with Instantaneous Impulses. In Advanced Topics in Fractional Differential Equations; Springer: Cham, Switzerland, 2023; pp. 77–111. [Google Scholar]
- Alsheekhhussain, Z.; Ibrahim, A.G.; Jawarneh, Y. Properties of solution sets for ψ-Cauto fractional non-instantaneous impulsive semi-linear differential inclusions with infinite delay. Fractal Fract. 2023, 7, 545. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Hristova, S.; O’Regan, D. Non-Instantaneous Impulses in Differential Equations; Springer: New York, NY, USA, 2017. [Google Scholar]
- Terzieva, R. Some phenomena for non-instantaneous impulsive differential equations. Int. J. Pure Appl. Math. 2018, 119, 483–490. [Google Scholar]
- Xu, H.F.; Zhu, Q.X.; Zheng, W.X. Exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses. IEEE Trans. Autom. Control 2023. [Google Scholar] [CrossRef]
- Ibrahim, A.G. Differential Equations and inclusions of fractional order with impulse effect in Banach spaces. Bull. Malays. Math. Sci. Soc. 2020, 43, 69–109. [Google Scholar] [CrossRef]
- Wang, J.; Ibrahim, A.G.; O’Regan, D. Nonempties and compactness of the solution set for fractional evolution inclusions with non-instantaneous impulses. Electron. J. Differ. Equ. 2019, 2019, 37. [Google Scholar]
- Wang, J.R.; Ibrahim, A.G.; O’Regan, D.; Almandouh, A.A. Nonlocal fractional semilinear differential inclusions with noninstantaneous impulses of order α ∈ (1, 2). Int. J. Nonlinear Sci. Numer. Simul. 2021, 22, 593–603. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions. J. Frankl. Inst. 2017, 354, 3097–3119. [Google Scholar] [CrossRef]
- Liu, K. Stability analysis for (w, c)-periodic non-instantaneous impulsive differential equations. AIMS Math. 2022, 7, 1758–1774. [Google Scholar] [CrossRef]
- Ziane, M. On the Solution Set for weighted fractional differential equations in Banach spaces. Differ. Equ. Dyn. Syst. 2020, 28, 419–430. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Emin, S. Fractional-order boundary value problems with Katugampola fractional integral conditions. Adv. Differ. Equ. 2018, 81, 1–17. [Google Scholar] [CrossRef]
- Sousa, J.; Vanterler, D.C.; Oliveira, D.S.; Frederico, G.S.F.; Delfim, F.M.; Torres, D.F.M. Existence, uniquness and controllability for Hilfer differential equations on times scales. Math. Meth. Appl. Sci. 2023, 46, 12378–12401. [Google Scholar] [CrossRef]
- Salim, A.; Benchohra, M.; Graef, J.R.; Lazreg, J.E. Boundary value problem for fractional order generalized Hilfer-type fractional derivative with non-instantaneous impulses. Fractal Fract. 2021, 5, 1. [Google Scholar] [CrossRef]
- Wang, J.R.; Ibrahim, A.G.; O’Regan, D. Global Attracting Solutions to Hilfer fractional noninstantaneous impulsive semilinear di erential inclusions of Sobolev type and with nonlocal conditions. Nonlinear Anal. Model. Control 2019, 24, 775–803. [Google Scholar]
- Wang, J.R.; Ibrahim, A.G.; O’Regan, D. Hilfer type fractional differential switched inclusions with noninstantaneous impulsive and nonlocal conditions. Nonlinear Anal. Model. Control 2018, 23, 921–941. [Google Scholar] [CrossRef]
- Gou, H.; Li, Y. Study on Hilfer-Katugampola fractional implicit differential equations with nonlocal conditions. Bull. Sci. Math. Matiques 2021, 167, 102944. [Google Scholar] [CrossRef]
- Oliveira, D.; Capelas De Oliveira, E. Hilfer-Katugakpola fractional derivative. Comput. Appl. Math. 2018, 37, 672–3690. [Google Scholar] [CrossRef]
- Berhail, A.; Tabouche, N.; Alzabut, J.; Samei, M.S. Using the Hilfer–Katugampola fractional derivative in initial-value Mathieu fractional differential equations with application to a particle in the plane. Adv. Contin. Discret. Model. 2022, 2022, 44. [Google Scholar] [CrossRef]
- Bhairat, S.P.; Samei, M.E. Nonexistence of global solutions for a Hilfer–Katugampola fractional differential problem. Partial. Equ. Appl. Math. 2023, 7, 100495. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Harikrishnan, S.; Kanagarajan, K. On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative. Acta Math. Sci. 2019, 39, 1568–1578. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Thadang, Y.; Ntouyas, S.K.; Tariboon, J. Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary conditions. Axioms 2021, 10, 130. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simulat. 2018, 91, 72. [Google Scholar] [CrossRef]
- Abdo, M.S.; Pancha, S.K. Fractional Integro-Di erential Equations Involving ψ-Hilfer Fractional Derivative. Adv. Appl. Math. Mech. 2019, 11, 338–359. [Google Scholar]
- Thaiprayoon, C.; Sudsutad, W.; Ntouyas, S.K. Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via ψ-Hilfer fractional derivative. Adv. Differ. Equ. 2021, 2021, 50. [Google Scholar] [CrossRef]
- Sudsutad, W.; Thaiprayoon, C.; Ntouyas, S.K. Existence and stability results for ψ-Hilfer fractional ntegro-differential equation with mixed nonlocal boundary conditions. Aims Math. 2021, 6, 4119–4141. [Google Scholar] [CrossRef]
- Kucchea, K.D.; Jyoti, P. Kharadea, J.P.; Sousab, J.; Vanterler, D.C. On the Nonlinear Impulsive ψ-Hilfer Fractional differential Equations. Math. Model. Anal. 2020, 25, 642–660. [Google Scholar] [CrossRef]
- Abbas, M.I. Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function. Stud. Univ. Babes-Bolyai Math. 2023, 68, 543–562. [Google Scholar] [CrossRef]
- Arul, R.; Karthikeyan, P.; Karthikeyan, K.; Geetha, P.; Alruwaily, Y.; Almaghamsi, L.; El-hady, E. On ψ-Hilfer fractional integro-differential equations with non-instantaneous impulsive conditions. Fractal Fract. 2022, 6, 732. [Google Scholar] [CrossRef]
- Ngo, V.H.; O’Regan, D. A remark on ψ-Hilfer fractional differential equations with noninstantaneous impulses. Math. Meth. Appl. Sci. 2020, 1–15. [Google Scholar]
- Ibrahim, A.G.; Elmandouh, A.A. Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Math. 2021, 6, 10802–10832. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [Google Scholar] [CrossRef]
- Dhayal, R.; Zhu, Q. Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses. Chaos Solitons Fractals 2023, 168, 113105. [Google Scholar] [CrossRef]
- Afshari, H.; Karapınar, E. A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Differ. Equ. 2020, 2020, 616. [Google Scholar] [CrossRef]
- Al-Refai, M. On weighted Atangana–Baleanu fractional operators. Adv. Differ. Equ. 2020, 2020, 3. [Google Scholar] [CrossRef]
- Al-Refai, M.; Jarrah, A.M. Fundamental results on weighted Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2019, 126, 7–11. [Google Scholar] [CrossRef]
- Alshammari, M.; Alshammari, S.; Abdo, M.S. Existence theorems for hybrid fractional differential equations with ψ-weighted Caputo–Fabrizio derivatives. J. Math. 2023, 2023, 8843470. [Google Scholar] [CrossRef]
- Benial, K.; Souid, M.S.; Jarad, F.; Alqudah, M.A.; Abdeljawad, T. Boundary value problem of weighted fractional derivative of a function with a respect to another function of variable order. J. Inequalities Appl. 2023, 2023, 127. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional operators of a function with respect to another function. Fractals 2020, 28, 2040011. [Google Scholar] [CrossRef]
- Banas, J.; Mursaleen, M. Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations; Springer: New Delhi, India, 2014. [Google Scholar]
- Kamenskii, M.; Obukhowskii, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces; Walter de Gruyter: Berlin, Germany, 2001. [Google Scholar]
- Gabeleh, M.; Eberhard Malkowsky, E.; Mursaleen, M.; Rakocevic, V. A New Survey of Measures of Noncompactness and Their Applications. Axioms 2022, 11, 299. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, L. Representation of measures of noncompactness and its applications related to an initial value problem in Banach spaces. Sci. China Math. 2023, 66, 745–776. [Google Scholar] [CrossRef]
- Bothe, D. Multivalued perturbation of m-accerative differential inclusions. Israel J. Math. 1998, 108, 109–138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsheekhhussain, Z.; Ibrahim, A.G.; Al-Sawalha, M.M.; Jawarneh, Y. The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces. Fractal Fract. 2024, 8, 144. https://doi.org/10.3390/fractalfract8030144
Alsheekhhussain Z, Ibrahim AG, Al-Sawalha MM, Jawarneh Y. The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces. Fractal and Fractional. 2024; 8(3):144. https://doi.org/10.3390/fractalfract8030144
Chicago/Turabian StyleAlsheekhhussain, Zainab, Ahmad Gamal Ibrahim, Mohammed Mossa Al-Sawalha, and Yousef Jawarneh. 2024. "The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces" Fractal and Fractional 8, no. 3: 144. https://doi.org/10.3390/fractalfract8030144
APA StyleAlsheekhhussain, Z., Ibrahim, A. G., Al-Sawalha, M. M., & Jawarneh, Y. (2024). The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces. Fractal and Fractional, 8(3), 144. https://doi.org/10.3390/fractalfract8030144