Numerical Study of Time-Fractional Schrödinger Model in One-Dimensional Space Arising in Mathematical Physics
Abstract
:1. Introduction
2. Overview of Fractional Calculus and Elzaki Transform
- 1.
- ,
- 2.
- ,
- 3.
- ,
- 4.
- ,
- 5.
- .
3. Strategy of ET-RPSM
- Step 3. We construct the residual functions namely, and for an algebraic system of (19) as follows
- , and , .
- , and , for .
- , and , for , and
- Step 5. The components of and and are obtained by applying the fact , and where . The calculated results of and are collected in terms of a series, which can be utilized for fractional expansion series (21).
- Step 6. Using the inverse ET on both sides of Elzaki series, one can obtain the components and for the main Equation (17).
4. Numerical Applications
4.1. Problem 1
4.2. Problem 2
4.3. Problem 3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, J. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 1999, 15, 86–90. [Google Scholar]
- Alabedalhadi, M.; Al-Smadi, M.; Al-Omari, S.; Baleanu, D.; Momani, S. Structure of optical soliton solution for nonliear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term. Phys. Scr. 2020, 95, 105215. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Sánchez Ruiz, L.M.; Ciancio, A. New challenges arising in engineering problems with fractional and integer order. Fractal Fract. 2021, 5, 35. [Google Scholar] [CrossRef]
- Hasan, S.; Al-Smadi, M.; Dutta, H.; Momani, S.; Hadid, S. Multi-step reproducing kernel algorithm for solving Caputo–Fabrizio fractional stiff models arising in electric circuits. Soft Comput. 2022, 26, 3713–3727. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Sajjadi, S.S.; Mozyrska, D. A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 083127. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, L.; Şenol, M.; Iyiola, O.S. Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 2021, 182, 211–233. [Google Scholar] [CrossRef]
- Pandir, Y.; Yasmin, H. Optical soliton solutions of the generalized sine-gordon equation. Electron. J. Appl. Math. 2023, 1, 71–86. [Google Scholar] [CrossRef]
- Achar, B.N.; Yale, B.T.; Hanneken, J.W. Time fractional Schrodinger equation revisited. Adv. Math. Phys. 2013, 2013, 290216. [Google Scholar] [CrossRef]
- Saxena, R.; Saxena, R.; Kalla, S. Solution of space-time fractional Schrödinger equation occurring in quantum mechanics. Fract. Calc. Appl. Anal. 2010, 13, 177–190. [Google Scholar]
- Wang, S.; Xu, M. Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 2007, 48, 043502. [Google Scholar] [CrossRef]
- Abu Arqub, O. Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space. Fundam. Inform. 2019, 166, 87–110. [Google Scholar] [CrossRef]
- Sadighi, A.; Ganji, D. Analytic treatment of linear and nonlinear Schrödinger equations: A study with homotopy-perturbation and Adomian decomposition methods. Phys. Lett. A 2008, 372, 465–469. [Google Scholar] [CrossRef]
- Demir, A.; Bayrak, M.A.; Ozbilge, E. New approaches for the solution of space-time fractional Schrödinger equation. Adv. Differ. Equ. 2020, 2020, 133. [Google Scholar] [CrossRef]
- Ramswroop; Singh, J.; Kumar, D. Numerical study for time-fractional Schrödinger equations arising in quantum mechanics. Nonlinear Eng. 2014, 3, 169–177. [Google Scholar] [CrossRef]
- Liaqat, M.I.; Akgül, A. A novel approach for solving linear and nonlinear time-fractional Schrödinger equations. Chaos Solitons Fractals 2022, 162, 112487. [Google Scholar] [CrossRef]
- Khan, N.A.; Jamil, M.; Ara, A. Approximate solutions to time-fractional Schrödinger equation via homotopy analysis method. Int. Sch. Res. Not. 2012, 2012, 197068. [Google Scholar] [CrossRef]
- Okposo, N.I.; Veeresha, P.; Okposo, E.N. Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons. Chin. J. Phys. 2022, 77, 965–984. [Google Scholar] [CrossRef]
- Arikoglu, A.; Ozkol, I. Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals 2009, 40, 521–529. [Google Scholar] [CrossRef]
- Erfanifar, R.; Hajarian, M.; Sayevand, K. A family of iterative methods to solve nonlinear problems with applications in fractional differential equations. Math. Methods Appl. Sci. 2024, 47, 2099–2119. [Google Scholar] [CrossRef]
- Pandir, Y.; Ekin, A. New solitary wave solutions of the korteweg-de vries (kdv) equation by new version of the trial equation method, Electron. Electron. J. Appl. Math. 2023, 1, 101–113. [Google Scholar] [CrossRef]
- Afreen, A.; Raheem, A. Study of a nonlinear system of fractional differential equations with deviated arguments via Adomian decomposition method. Int. J. Appl. Comput. Math. 2022, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Salh, S.A.H. Generalized Taylor matrix method for solving linear integro-fractional differential equations of Volterra type. Appl. Math. Sci. 2011, 5, 1765–1780. [Google Scholar]
- Pirim, N.A.; Ayaz, F. Hermite collocation method for fractional order differential equations. Int. J. Optim. Control. Theor. Appl. IJOCTA 2018, 8, 228–236. [Google Scholar] [CrossRef]
- Tadjeran, C.; Meerschaert, M.M.; Scheffler, H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213, 205–213. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Scheffler, H.P.; Tadjeran, C. Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 2006, 211, 249–261. [Google Scholar] [CrossRef]
- Nadeem, M.; Iambor, L.F. The traveling wave solutions to a variant of the boussinesq equation. Electron. J. Appl. Math. 2023, 1, 26–37. [Google Scholar]
- Berz, M. The method of power series tracking for the mathematical description of beam dynamics. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1987, 258, 431–436. [Google Scholar] [CrossRef]
- Az-Zo’bi, E.A.; Yıldırım, A.; AlZoubi, W.A. The residual power series method for the one-dimensional unsteady flow of a van der Waals gas. Phys. A Stat. Mech. Its Appl. 2019, 517, 188–196. [Google Scholar] [CrossRef]
- Prakasha, D.; Veeresha, P.; Baskonus, H.M. Residual power series method for fractional Swift—Hohenberg equation. Fractal Fract. 2019, 3, 9. [Google Scholar] [CrossRef]
- Elzaki, T.M. The new integral transform Elzaki transform. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Naeem, M.; Azhar, O.F.; Zidan, A.M.; Nonlaopon, K.; Shah, R. Numerical analysis of fractional-order parabolic equations via Elzaki transform. J. Funct. Spaces 2021, 2021, 3484482. [Google Scholar] [CrossRef]
- Lu, D.; Suleman, M.; He, J.H.; Farooq, U.; Noeiaghdam, S.; Chandio, F.A. Elzaki projected differential transform method for fractional order system of linear and nonlinear fractional partial differential equation. Fractals 2018, 26, 1850041. [Google Scholar] [CrossRef]
- Neamaty, A.; Agheli, B.; Darzi, R. Applications of homotopy perturbation method and Elzaki transform for solving nonlinear partial differential equations of fractional order. J. Nonlin. Evolut. Equat. Appl. 2016, 2015, 91–104. [Google Scholar]
- Jena, R.M.; Chakraverty, S. Solving time-fractional Navier–Stokes equations using homotopy perturbation Elzaki transform. SN Appl. Sci. 2019, 1, 16. [Google Scholar] [CrossRef]
- Arqub, O.A.; El-Ajou, A.; Zhour, Z.A.; Momani, S. Multiple solutions of nonlinear boundary value problems of fractional order: A new analytic iterative technique. Entropy 2014, 16, 471–493. [Google Scholar] [CrossRef]
- Elzaki, T.M.; Ezaki, S.M. On the Elzaki transform and ordinary differential equation with variable coefficients. Adv. Theor. Appl. Math. 2011, 6, 41–46. [Google Scholar]
- Sunthrayuth, P.; Ali, F.; Alderremy, A.A.; Shah, R.; Aly, S.; Hamed, Y.S.; Katle, J. The numerical investigation of fractional-order Zakharov–Kuznetsov equations. Complexity 2021, 2021, 4570605. [Google Scholar] [CrossRef]
- Alomari, A.; Noorani, M.; Nazar, R. Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1196–1207. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos Solitons Fractals 2008, 37, 1136–1142. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadeem, M.; Iambor, L.F. Numerical Study of Time-Fractional Schrödinger Model in One-Dimensional Space Arising in Mathematical Physics. Fractal Fract. 2024, 8, 277. https://doi.org/10.3390/fractalfract8050277
Nadeem M, Iambor LF. Numerical Study of Time-Fractional Schrödinger Model in One-Dimensional Space Arising in Mathematical Physics. Fractal and Fractional. 2024; 8(5):277. https://doi.org/10.3390/fractalfract8050277
Chicago/Turabian StyleNadeem, Muhammad, and Loredana Florentina Iambor. 2024. "Numerical Study of Time-Fractional Schrödinger Model in One-Dimensional Space Arising in Mathematical Physics" Fractal and Fractional 8, no. 5: 277. https://doi.org/10.3390/fractalfract8050277
APA StyleNadeem, M., & Iambor, L. F. (2024). Numerical Study of Time-Fractional Schrödinger Model in One-Dimensional Space Arising in Mathematical Physics. Fractal and Fractional, 8(5), 277. https://doi.org/10.3390/fractalfract8050277