Fractional Scalar Field Cosmology
Abstract
:1. Introduction
2. Classical Perspectives on the Einstein Scalar Field System with the Fractional Action
- Last-step modification: this is the simplest approach; the partial derivatives (of the ordinary differential equations associated with the standard cosmological model) are replaced by fractional derivatives.
- Intermediate-step modification: in this method, instead of employing the standard Lagrangian, the effective field equations are derived from the appropriate fractional Lagrangian, whose terms consist of fractional order derivatives.
3. ADM Formalism and the Fractional Quantum Cosmology
3.1. Wheeler–DeWitt Equation in Slow-Roll Regime
3.2. Fractional Quantum Cosmology
- It has been shown that the fractional Hamiltonian is the Hermitian or self-adjoint operator (similar to that of standard quantum mechanics).
- For a state of a closed fractional ordinary quantum mechanical system that has a parity, it is straightforward to show that the associated parity is conserved.
- It is feasible to generalize the fundamental equations of the probability, current density vector, and the velocity vector associated with standard quantum mechanics to retrieve the corresponding ones for fractional ordinary quantum mechanics.
4. Conclusions and Discussion
- As has been highlighted in the preceding sections, this study is merely a brief review article on the topic, and our goal in writing this article was to provide a review of the few prior studies in a coherent and abstract manner as well as to add a few comments to emphasize the importance of fractional cosmology established by considering the most commonly used Einstein scalar field system.
- It should be noted that the scenario reviewed in Section 3.2 is not the corresponding quantized scenario of the classical one reviewed in Section 2 (that is why two distinct fractional parameters were utilized).
- We should point out that, in this article, we only looked at the specific fractional cosmological models in the particular cases especially for the quantum regime. More precisely, the latter can be investigated for more extended cosmological models such as those with either general scalar potentials, non-vanishing spatial curvature, or non-vanishing factor-ordering parameter, see, for instance [108,109] and references therein.
- Our models can be extended to more generalized models by replacing either the FLRW metric or the Einstein scalar field setting by other metrics or more extended underlying gravitational models. Concretely, by considering each of the standard cosmological models, it is possible to establish the corresponding fractional model and compare the obtained results not only to those of the standard models but also to determine whether such results can accurately predict the reported recent observational data. In any case, fractional cosmology is a relatively new and powerful paradigm that has yet to be applied to outstanding problems in cosmology. Our future efforts will include producing other interesting models within this scope.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Cliftona, T.; Ferreiraa, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar]
- Brandenberger, R.H. Inflationary cosmology: Progress and problems. In Large Scale Structure Formation; Springer: Berlin/Heidelberg, Germany, 2000; pp. 169–211. [Google Scholar]
- Faraoni, V.; Capozziello, S.; Capozziello, S.; Faraoni, V. From the early to the present universe. In Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 347–390. [Google Scholar]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Akrami, Y.; Sebastian, B.; Jose, L.B.-S.; Christian, B.; Camille, B.; Mariam, B.-L.; Philippe, B.; Gianluca, C.; Salvatore, C.; Roberto, C.; et al. Modified Gravity and Cosmology: An Update by the CANTATA Network; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Sakellariadou, M.; Vargas Moniz, P. Geodesic deviation in Sáez–Ballester theory. Phys. Dark Univ. 2022, 37, 101112. [Google Scholar] [CrossRef]
- Alves Batista, R.; Amelino-Camelia, G.; Boncioli, D.; Carmona, J.M.; di Matteo, A.; Gubitosi, G.; Lobo, I.; Mavromatos, N.E.; Pfeifer, C.; Rubiera-Garcia, D.; et al. White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era. arXiv 2023, arXiv:2312.00409. Available online: https://arxiv.org/abs/2312.00409 (accessed on 20 April 2024).
- Chokyi, K.K.; Chattopadhyay, S. Cosmology of Tsallis and Kaniadakis holographic dark energy in Saez-Ballester theory and consideration of viscous van der Waals fluid. Ann. Phys. 2024, 463, 169611. [Google Scholar] [CrossRef]
- Singh, J.K.; Balhara, H.; Shaily; Do, T.Q.; Jena, J. Observational constraints on Hubble parameter in Sáez Ballester theory. Astron. Comput. 2024, 47, 100800. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Carroll, S.M.; Press, W.H.; Turner, E.L. The cosmological constant. Annu. Rev. Astron. Astrophys. 1992, 30, 499–542. [Google Scholar] [CrossRef]
- Nobbenhuis, S. Categorizing different approaches to the cosmological constant problem. Found. Phys. 2006, 36, 613–680. [Google Scholar] [CrossRef]
- Padilla, A. Lectures on the cosmological constant problem. arXiv 2015, arXiv:1502.05296. [Google Scholar]
- Wang, Q. Reformulation of the Cosmological Constant Problem. Phys. Rev. Lett. 2020, 125, 051301. [Google Scholar] [CrossRef] [PubMed]
- Dainotti, M.; De Simone, B.; Montani, G.; Schiavone, T.; Lambiase, G. The Hubble constant tension: Current status and future perspectives through new cosmological probes. arXiv 2023, arXiv:2301.10572. [Google Scholar]
- Vagnozzi, S. Seven hints that early-time new physics alone is not sufficient to solve the Hubble tension. Universe 2023, 9, 393. [Google Scholar] [CrossRef]
- Sahni, V. The Cosmological constant problem and quintessence. Class. Quant. Grav. 2002, 19, 3435–3448. [Google Scholar] [CrossRef]
- Calcagni, G. Cosmological Constant Problem. In Classical and Quantum Cosmology; Springer International Publishing: Cham, Switzerland, 2017; pp. 301–388. [Google Scholar] [CrossRef]
- Famaey, B.; McGaugh, S. Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Rev. Relativ. 2012, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, S.S. A tale of two paradigms: The mutual incommensurability of ΛCDM and MOND. Can. J. Phys. 2015, 93, 250–259. [Google Scholar] [CrossRef]
- Sharif, M.; Yousaf, Z. Energy density inhomogeneities with polynomial f(R) cosmology. Astrophys. Space Sci. 2014, 352, 321–329. [Google Scholar] [CrossRef]
- Leon, G.; Saridakis, E.N. Dynamical behavior in mimetic f(R) gravity. J. Cosmol. Astropart. Phys. 2015, 2015, 031. [Google Scholar] [CrossRef]
- Abbas, G.; Khan, M.; Ahmad, Z.; Zubair, M. Higher-dimensional inhomogeneous perfect fluid collapse in f(R) gravity. Eur. Phys. J. C 2017, 77, 443. [Google Scholar] [CrossRef]
- Sharif, M.; Yousaf, Z. Causes of Inhomogeneous Energy Density in Relativistic Fluids with f(R) Background. In Proceedings of the Mathematical Physics: Proceedings of the 14th Regional Conference, Islamabad, Pakistan, 9–14 November 2015; World Scientific: Singapore, 2017; pp. 76–83. [Google Scholar]
- Padmanabhan, T. Thermodynamical Aspects of Gravity: New insights. Rept. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef]
- Verlinde, E.P. Emergent gravity and the dark universe. Scipost Phys. 2017, 2, 016. [Google Scholar] [CrossRef]
- Rosen, N. A bi-metric theory of gravitation. Gen. Relativ. Gravit. 1973, 4, 435–447. [Google Scholar] [CrossRef]
- García-García, C.; Maroto, A.L.; Martín-Moruno, P. Cosmology with moving bimetric fluids. J. Cosmol. Astropart. Phys. 2016, 2016, 022. [Google Scholar] [CrossRef]
- Bassi, A.; Adil, S.A.; Rajvanshi, M.P.; Sen, A.A. Cosmological evolution in bimetric gravity: Observational constraints and LSS signatures. Eur. Phys. J. C 2023, 83, 525. [Google Scholar] [CrossRef]
- Maldonado, C.; Méndez, F. Axionic Dark Matter in a Bi-Metric Universe. Universe 2023, 9, 429. [Google Scholar] [CrossRef]
- Mousavi, M.; Atazadeh, K. Cosmological future singularities in massive gravity and massive bigravity. Phys. Dark Univ. 2022, 35, 100942. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Pacheco, R.; Sakellariadou, M.; Moniz, P.V. Late time cosmic acceleration in modified Sáez–Ballester theory. Phys. Dark Univ. 2020, 27, 100446. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Jalalzadeh, S.; Moniz, P. Noncompactified Kaluza–Klein Gravity. Universe 2022, 8, 431. [Google Scholar] [CrossRef]
- Chetia, C.; Gohain, M.M.; Bhuyan, K. Particle creation and bulk viscosity in Bianchi-I universe in Saez–Ballester theory with different deceleration parameters. Gen. Relativ. Gravit. 2023, 55, 107. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Vargas Moniz, P. Noncommutative minisuperspace, gravity-driven acceleration, and kinetic inflation. Phys. Rev. D 2014, 90, 083533. [Google Scholar] [CrossRef]
- Reyes, L.M.; Perez Bergliaffa, S.E. On the emergence of the Λ CDM model from self-interacting Brans–Dicke theory in d=5. Eur. Phys. J. C 2018, 78, 17. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Katırcı, N.; Özdemir, N.; Vázquez, J.A. Anisotropic massive Brans–Dicke gravity extension of the standard Λ CDM model. Eur. Phys. J. C 2020, 80, 32. [Google Scholar] [CrossRef]
- Ildes, M.; Arik, M. Analytic solutions of Brans–Dicke cosmology: Early inflation and late time accelerated expansion. Int. J. Mod. Phys. D 2023, 32, 2250131. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Ziaie, A.H.; Jalalzadeh, S.; Moniz, P.V. Non-singular Brans–Dicke collapse in deformed phase space. Ann. Phys. 2016, 375, 154–178. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Vargas Moniz, P. Gravity-Driven Acceleration and Kinetic Inflation in Noncommutative Brans-Dicke Setting. Odessa Astron. Pub. 2016, 29, 19. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Shojai, F. Geodesic deviation equation in Brans–Dicke theory in arbitrary dimensions. Phys. Dark Univ. 2021, 32, 100781. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Marto, J.a.; Vargas Moniz, P. Kinetic inflation in deformed phase space Brans–Dicke cosmology. Phys. Dark Univ. 2019, 24, 100269. [Google Scholar] [CrossRef]
- Kan, N.; Aoyama, T.; Shiraishi, K. Classical and quantum bicosmology with noncommutativity. Class. Quantum Gravity 2022, 40, 015010. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Marto, J. Phase space noncommutativity, power-law inflation and quantum cosmology. arXiv 2023, arXiv:2311.01627. Available online: https://arxiv.org/abs/2311.01627 (accessed on 20 April 2024).
- Rasouli, S.M.M. Noncommutativity, Sáez–Ballester Theory and Kinetic Inflation. Universe 2022, 8, 165. [Google Scholar] [CrossRef]
- Bouhmadi-Lopez, M.; Lazkoz, R. Chaplygin DGP cosmologies. Phys. Lett. B 2007, 654, 51–57. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Brilenkov, M.; Brilenkov, R.; Morais, J.; Zhuk, A. Scalar perturbations in the late Universe: Viability of the Chaplygin gas models. J. Cosmol. Astropart. Phys. 2015, 2015, 037. [Google Scholar] [CrossRef]
- Doroud, N.; Rasouli, S.M.M.; Jalalzadeh, S. A class of cosmological solutions in induced matter theory with conformally flat bulk space. Gen. Rel. Grav. 2009, 41, 2637–2656. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Jalalzadeh, S. On the energy conditions in non-compact Kaluza-Klein gravity. Ann. Phys. 2010, 19, 276–280. [Google Scholar] [CrossRef]
- Rasouli, S.M.M. Kasner Solution in Brans–Dicke Theory and Its Corresponding Reduced Cosmology. Springer Proc. Math. Stat. 2014, 60, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, S.M.M.; Vargas Moniz, P. Modified Saez–Ballester scalar–tensor theory from 5D space-time. Class. Quant. Grav. 2018, 35, 025004. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Vargas Moniz, P. Extended anisotropic models in noncompact Kaluza-Klein theory. Class. Quant. Grav. 2019, 36, 075010. [Google Scholar] [CrossRef]
- Rasouli, S.M.M. Noncompactified Kaluza–Klein theories and Anisotropic Kantowski-Sachs Universe. arXiv 2023, arXiv:2311.10247. [Google Scholar]
- Rasouli, S.M.M.; Ziaie, A.M.J.M.P. Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space. Phys. Rev. D 2014, 89, 044028. [Google Scholar] [CrossRef]
- Jalalzadeh, S.; Capistrano, A.M.P. Quantum deformation of quantum cosmology: A framework to discuss the cosmological constant problem. Phys. Dark Univ. 2017, 18, 55–66. [Google Scholar] [CrossRef]
- Roberts, M.D. Fractional Derivative Cosmology. arXiv 2009, arXiv:0909.1171. [Google Scholar] [CrossRef]
- Jamil, M.; Rashid, M.A.; Momeni, D.; Razina, O.; Esmakhanova, K. Fractional Action Cosmology with Power Law Weight Function. J. Phys. Conf. Ser. 2012, 354, 012008. [Google Scholar] [CrossRef]
- Torres, I.; Fabris, J.C.; Piattella, O.F.; Batista, A.B. Quantum Cosmology of Fab Four John Theory with Conformable Fractional Derivative. Universe 2020, 6, 50. [Google Scholar] [CrossRef]
- González, E.; Leon, G.; Fernandez-Anaya, G. Exact solutions and cosmological constraints in fractional cosmology. Fractal Fract. 2023, 7, 368. [Google Scholar] [CrossRef]
- Leon, G.; García-Aspeitia, M.A.; Fernandez-Anaya, G.; Hernández-Almada, A.; Magaña, J.; González, E. Cosmology under the fractional calculus approach: A possible H0 tension resolution? arXiv 2023, arXiv:2304.14465. Available online: https://arxiv.org/abs/2304.14465 (accessed on 20 April 2024).
- de Oliveira Costa, E.W.; Jalalzadeh, R.; da Silva Junior, P.F.; Rasouli, S.M.M.; Jalalzadeh, S. Estimated Age of the Universe in Fractional Cosmology. Fractal Fract. 2023, 7, 854. [Google Scholar] [CrossRef]
- Shchigolev, V.K. Cosmological Models with Fractional Derivatives and Fractional Action Functional. Commun. Theor. Phys. 2011, 56, 389–396. [Google Scholar] [CrossRef]
- Shchigolev, V.K. Fractional-order derivatives in cosmological models of accelerated expansion. Mod. Phys. Lett. A 2021, 36, 2130014. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Torres, D.F. Fractional actionlike variational problems. J. Math. Phys. 2008, 49, 053521. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Quantum Mechanics; World Scientific: Singapore, 2018. [Google Scholar]
- Laskin, N. Fractional quantum mechanics. Phys. Rev. E 2000, 62, 3135. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R.; Styer, D.F. Quantum Mechanics and Path Integrals; Courier Corporation: Chelmsford, MA, USA, 2010. [Google Scholar]
- Laskin, N. Fractional Quantum Mechanics and Levy Path Integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Naber, M.G. Time fractional Schrödinger equation. J. Math. Phys. 2004, 45, 3339–3352. [Google Scholar] [CrossRef]
- Wang, S.W.; Xu, M. Generalized fractional Schrödinger equation with space–time fractional derivatives. J. Math. Phys. 2007, 48, 043502. [Google Scholar] [CrossRef]
- Dong, J.; Xu, M. Space–time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 2008, 344, 1005–1017. [Google Scholar] [CrossRef]
- Laskin, N. Time fractional quantum mechanics. Chaos Solitons Fractals 2017, 102, 16–28. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Jalalzadeh, S.; Moniz, P.V. Broadening quantum cosmology with a fractional whirl. Mod. Phys. Lett. A 2021, 36, 2140005. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Costa, E.W.O.; Moniz, P.V.; Jalalzadeh, S. Inflation and fractional quantum cosmology. Fractal Fract. 2022, 6, 655. [Google Scholar] [CrossRef]
- Calcagni, G. Quantum field theory, gravity and cosmology in a fractal universe. J. High Energy Phys. 2010, 2010, 1–38. [Google Scholar] [CrossRef]
- Shchigolev, V. Fractional einstein–hilbert action cosmology. Mod. Phys. Lett. A 2013, 28, 1350056. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Fractional action cosmology with variable order parameter. Int. J. Theor. Phys. 2017, 56, 1159–1182. [Google Scholar] [CrossRef]
- Socorro, J.; Rosales, J.J.; Toledo-Sesma, L. Anisotropic fractional cosmology: K-essence theory. Fractal Fract. 2023, 7, 814. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Anukool, W. The paradigm of quantum cosmology through Dunkl fractional Laplacian operators and fractal dimensions. Chaos Solitons Fractals 2023, 167, 113097. [Google Scholar] [CrossRef]
- Socorro, J.; Rosales, J.J. Quantum fractionary cosmology: K-essence theory. Universe 2023, 9, 185. [Google Scholar] [CrossRef]
- Çoker, Z.; Ökcü, Ö.; Aydiner, E. Modified Friedmann equations from fractional entropy. Europhys. Lett. 2023, 143, 59001. [Google Scholar] [CrossRef]
- Micolta-Riascos, B.; Millano, A.D.; Leon, G.; Erices, C.; Paliathanasis, A. Revisiting fractional cosmology. Fractal Fract. 2023, 7, 149. [Google Scholar] [CrossRef]
- Du, M.; Wang, Z.; Hu, H. Measuring memory with the order of fractional derivative. Sci. Rep. 2013, 3, 3431. [Google Scholar] [CrossRef]
- Tarasov, V.E. No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 157–163. [Google Scholar] [CrossRef]
- Tarasov, V.E. Generalized memory: Fractional calculus approach. Fractal Fract. 2018, 2, 23. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal probability theory: General fractional calculus approach. Mathematics 2022, 10, 3848. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Mainardi, F. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Kimeu, J.M. Fractional Calculus: Definitions and Applications. Paper 115. 2009. Available online: http://digitalcommons.wku.edu/theses/115 (accessed on 20 April 2024).
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef]
- Baleanu, D.; Kumar, D. Fractional Calculus and Its Applications in Physics; Frontiers Media SA: Lausanne, Switzerland, 2019. [Google Scholar]
- Calcagni, G. Classical and quantum gravity with fractional operators. Class. Quantum Gravity 2021, 38, 165005. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F. The Variable-Order Fractional Calculus of Variations; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Faraoni, V.; Faraoni, V. Scalar-Tensor Gravity; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Jalalzadeh, S.; Vargas Moniz, P. Challenging Routes in Quantum Cosmology; World Scientific: Singapore, 2022. [Google Scholar] [CrossRef]
- Vilenkin, A. Quantum Cosmology and the Initial State of the Universe. Phys. Rev. D 1988, 37, 888. [Google Scholar] [CrossRef] [PubMed]
- Linde, A.D. Inflation and Quantum Cosmology; Academic Press, Inc.: Cambridge, MA, USA, 1990; p. 537. [Google Scholar]
- Siong, C.; Radiman, S. Derivation of Friedmann’s Acceleration Equation from Canonical Quantum Cosmology. Adv. Studies Theor. Phys. 2013, 7, 515–525. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Schrodinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef]
- Achar, B.N.N.; Yale, B.; Hanneken, J.W. Time Fractional Schrodinger Equation Revisited. Adv. Math. Phys. 2013, 2013, 290216. [Google Scholar] [CrossRef]
- Laskin, N. Fractals and quantum mechanics. Chaos 2000, 10, 780. [Google Scholar] [CrossRef]
- Pozrikidis, C. The Fractional Laplacian; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Laskin, N. Principles of Fractional Quantum Mechanics. arXiv 2010, arXiv:1009.5533. [Google Scholar]
- Coule, D.H.; Martin, J. Quantum cosmology and open universes. Phys. Rev. D 2000, 61, 063501. [Google Scholar] [CrossRef]
- Socorro, J.; Pimentel, L.O.; Ortiz, C.; Aguero, M. Scalar field in the Bianchi I: Non commutative classical and Quantum Cosmology. Int. J. Theor. Phys. 2009, 48, 3567–3585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasouli, S.M.M.; Cheraghchi, S.; Moniz, P. Fractional Scalar Field Cosmology. Fractal Fract. 2024, 8, 281. https://doi.org/10.3390/fractalfract8050281
Rasouli SMM, Cheraghchi S, Moniz P. Fractional Scalar Field Cosmology. Fractal and Fractional. 2024; 8(5):281. https://doi.org/10.3390/fractalfract8050281
Chicago/Turabian StyleRasouli, Seyed Meraj Mousavi, Samira Cheraghchi, and Paulo Moniz. 2024. "Fractional Scalar Field Cosmology" Fractal and Fractional 8, no. 5: 281. https://doi.org/10.3390/fractalfract8050281
APA StyleRasouli, S. M. M., Cheraghchi, S., & Moniz, P. (2024). Fractional Scalar Field Cosmology. Fractal and Fractional, 8(5), 281. https://doi.org/10.3390/fractalfract8050281