Dynamics for a Nonlinear Stochastic Cholera Epidemic Model under Lévy Noise
Abstract
:1. Introduction
1.1. Motivation
1.2. Contribution
2. Models Formulation
- A1:
- Every parameter within the system is a non-negative, positive real number.
- A2:
- Both the pathogen in the environment and every individual in the population have the same probability of shifting into a new class. Put another way, the movement probability between the compartments is determined by the distribution of exponential types. The inverse of that parameter in an exponential distribution may be used to calculate the estimated average time spent in a class.
- A3:
- We assume a constant population in a sense that no infection can enter into the community neither we assume immigration into the population, and the only inflow into the susceptible compartment is due to births. This implies that the disease is solely spreading inside the population and that external infections have no effect on the dynamics of the epidemic.
- A4:
- Individuals who have recovered from cholera are no longer vulnerable to the disease and so do not need medical care. People who have recovered from cholera cannot exit the group and natural death is the sole way for a cholera-recovered individual to leave the class.
Fundamental Properties of Model (1)
3. Stochastic Model
3.1. Basic Concept
3.2. Euler–Maruyama Method
3.3. Wiener Process
4. Positive Global Solution of the Model
5. Extinction
6. Persistence of the Disease
7. Numerical Scheme and Simulations
7.1. Numerical Simulations for Extinction
7.2. Numerical Simulations for Persistence
7.3. Effects of the Noise on Systems (1)
7.4. Parameter Impact on
7.5. Parameter impact on
7.6. Noise Intensity Impact on
7.7. Comparison of Noises
8. Discussion and Conclusions
9. Future Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, J.; Wu, Z.; Zhou, X. Mathematical analysis of a cholera model with vaccination. J. Appl. Math. 2014, 2014, 324767. [Google Scholar] [CrossRef]
- Kirschner, A.K.T.; Schlesinger, J.; Farnleitner, A.H.; Hornek, R.; Süß, B.; Golda, B.; Herzig, A.; Reitner, B. Rapid growthof planktonic vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: Dependence on temperature and dissolved organic carbon quality. Appl. Environ. Microbiol. 2008, 74, 2004–2015. [Google Scholar] [CrossRef] [PubMed]
- Reidl, J.; Klose, K.E. Vibrio cholerae and cholera: Out of the water and into the host. FEMS Microbiol. Rev. 2002, 26, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Shuai, Z.; Tien, J.H.; Driessche, P.V.D. Cholera models with hyperinfectivity and temporary immunity. Bull. Math. Biol. 2012, 74, 2423–2445. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Cholera Vibrio Cholerae Infection. 2018. Available online: https://www.cdc.gov/cholera/general/index.html (accessed on 15 January 2024).
- Mwasa, A.; Tchuenche, J.M. Mathematical analysis of a cholera model with public health interventions. Biosystems 2011, 105, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Neilan, R.L.M.; Schaefer, E.; Gaff, H.; Fister, K.R.; Lenhart, S. Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 2010, 72, 2004–2018. [Google Scholar]
- Beryl, M.O.; George, L.O.; Fredrick, N.O. Mathematical analysis of a cholera transmission model incorporating media coverage. Int. J. Pure Appl. Math. 2016, 111, 219–231. [Google Scholar] [CrossRef]
- Sun, G.Q.; Xie, J.H.; Huang, S.H.; Jin, Z.; Li, M.T.; Liu, L. Transmission dynamics of cholera: Mathematical modeling and control strategies. Commun. Nonlinear Sci. 2017, 45, 235–244. [Google Scholar] [CrossRef]
- Wang, J.; Modnak, C. Modeling cholera dynamics with controls. Can. Appl. Math. Q. 2011, 19, 255–273. [Google Scholar]
- Meetei, M.Z.; Zafar, S.; Zaagan, A.A.; Mahnashi, A.M.; Idrees, M. Dengue Transmission Dynamics: A Fractional-Order Approach with Compartmental Modeling. Fractal Fract. 2024, 8, 207. [Google Scholar] [CrossRef]
- De la Sen, M.; Ibeas, A.; Alonso-Quesada, S.; Nistal, R. On a new epidemic model with asymptomatic and dead-infective subpopulations with feedback controls useful for Ebola disease. Discrete Dyn. Nat. Soc. 2017, 2017, 4232971. [Google Scholar] [CrossRef]
- Wajaree, W.; Botmart, T.; La-inchua, T.; Sabir, Z.; Núñez, R.A.S.; Abukhaled, M.; Guirao, J.L.G. A stochastic computational scheme for the computer epidemic virus with delay effects. AIMS Math. 2023, 8, 148–163. [Google Scholar]
- Sabbar, Y.; Din, A.; Kiouach, D. Influence of fractal-fractional differentiation and independent quadratic Lévy jumps on the dynamics of a general epidemic model with vaccination strategy. Chaos Soliton. Fract. 2023, 171, 113434. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ma, X.; Din, A. Stationary distribution and extinction of a stochastic SEIQ epidemic model with a general incidence function and temporary immunity. AIMS Math. 2021, 6, 12359–12378. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, J.; Qiu, C. Asymptotic Analysis for One-Stage Stochastic Linear Complementarity Problems and Applications. Mathematics 2023, 11, 482. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Qiao, L.; Zhang, Y.; Bai, J. Improved amplification factor transport transition model for transonic boundary layers. AIAA J. 2023, 61, 3866–3882. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Li, T.; Ghosh, B.K. Consensus control of general linear multiagent systems with antagonistic interactions and communication noises. IEEE Trans. Autom. Control 2018, 64, 2122–2127. [Google Scholar] [CrossRef]
- Lemos-Paião, A.P.; Maurer, H.; Silva, C.J.; Torres, D.F.M. A SIQRB delayed model for cholera and optimal control treatment. Math. Model. Nat. Phenom. 2022, 17, 25. [Google Scholar] [CrossRef]
- Li, D.; Wei, F.; Mao, X. Stationary distribution and density function of a stochastic SVIR epidemic model. J. Frankl. Inst. 2022, 359, 9422–9449. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, D.; Hayat, T.; Alsaedi, A. Dynamical behavior of a stochastic epidemic model for cholera. J. Frankl. Inst. 2019, 356, 7486–7514. [Google Scholar] [CrossRef]
- Wei, F.; Jiang, H.; Zhu, Q. Dynamical behaviors of a heroin population model with standard incidence rates between distinct patches. J. Frankl. Inst. 2021, 358, 4994–5013. [Google Scholar] [CrossRef]
- Danane, J.; Yavuz, M.; Yıldız, M. Stochastic modeling of three-species Prey–Predator model driven by Lévy Jump with Mixed Holling-II and Beddington–DeAngelis functional responses. Fractal Fract. 2023, 7, 751. [Google Scholar] [CrossRef]
- Huo, L.A.; Dong, Y.F.; Lin, T.T. Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise. Chin. Phys. B 2021, 30, 080201. [Google Scholar] [CrossRef]
- De la Sen, M.; Alonso-Quesada, S.; Ibeas, A. On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules. Appl. Math. Comput. 2015, 270, 953–976. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Z. The unique ergodic stationary distribution of two stochastic SEIVS epidemic models with higher order perturbation. Math. Biosci. Eng. 2023, 20, 1317–1343. [Google Scholar] [CrossRef] [PubMed]
- Applebaum, D. Lévy Processes and Stochastic Calculus; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Li, S. SIR Epidemic Model with General Nonlinear Incidence Rate and Lévy Jumps. Mathematics 2024, 12, 215. [Google Scholar] [CrossRef]
- Kiouach, D.; Azami El-idrissi, S.E.; Sabbar, Y. The impact of Lévy noise on the threshold dynamics of a stochastic susceptible-vaccinated-infected-recovered epidemic model with general incidence functions. Math. Methods Appl. Sci. 2024, 47, 297–317. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y. Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 379–395. [Google Scholar] [CrossRef]
- Boukanjime, B.; El Fatini, M. A stochastic Hepatitis B epidemic model driven by Lévy noise. Phys. A Stat. Mech. Its Appl. 2019, 521, 796–806. [Google Scholar] [CrossRef]
- Yang, H.; Jin, Z. Stochastic SIS epidemic model on network with Lévy noise. Stoch. Anal. Appl. 2022, 40, 520–538. [Google Scholar] [CrossRef]
- Kawamura, A. Lipschitz continuous ordinary differential equations are polynomial-space complete. Comput. Complex. 2010, 19, 305–332. [Google Scholar] [CrossRef]
- Honary, T.G.; Mahyar, H. Approximation in Lipschitz algebras. Quaest. Math. 2000, 23, 13–19. [Google Scholar] [CrossRef]
- Korneichuk, N.P.; Polovina, A.I. Algebraic-polynomial approximation of functions satisfying a Lipschitz condition. Math. Notes Acad. Sci. USSR 1971, 9, 254–257. [Google Scholar] [CrossRef]
- Schlage-Puchta, J.C. Optimal version of the Picard–Lindelöf theorem. Electron. J. Qual. Theory Differ. Equ. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- El Fatini, M.; Sekkak, I. Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect. Phys. A Stat. Mech. Its Appl. 2020, 541, 123315. [Google Scholar] [CrossRef]
- Din, A.; Li, Y. Lévy noise impact on a stochastic hepatitis B epidemic model under real statistical data and its fractal–fractional Atangana–Baleanu order model. Phys. Scr. 2021, 96, 124008. [Google Scholar] [CrossRef]
- Skorokhod, A.V. Asymptotic Methods in the Theory of Stochastic Differential Equations; American Mathematical Society: Ann Arbor, MI, USA, 2009; Volume 78. [Google Scholar]
- Evans, L.C. An Introduction to Stochastic Differential Equations; American Mathematical Society: Ann Arbor, MI, USA, 2012; Volume 82. [Google Scholar]
- Mao, X. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Wang, Z.; Xu, Y.; Yang, H. Lévy noise induced stochastic resonance in an FHN model. Sci. China Technol. Sci. 2016, 59, 371–375. [Google Scholar] [CrossRef]
- Ara, R.; Ahmad, S.; Khan, Z.A.; Zahri, M. Threshold dynamics of stochastic cholera epidemic model with direct transmission. AIMS Math. 2023, 8, 26863–26881. [Google Scholar] [CrossRef]
- Molz, F.J.; Liu, H.H.; Szulga, J. Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions. Water Resour. Res. 1997, 33, 2273–2286. [Google Scholar] [CrossRef]
- An, D.; Kim, N.H.; Choi, J.-H. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliab. Eng. Syst. Saf. 2015, 133, 223–236. [Google Scholar] [CrossRef]
- Falsone, G. Stochastic differential calculus for Gaussian and non-Gaussian noises: A critical review. Comm. Nonlinear Sci. 2018, 56, 198–216. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Tupin, F.; Denis, L. Patch similarity under non Gaussian noise. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 1845–1848. [Google Scholar]
- Barndorff-Nielsen, O.E.; Mikosch, T.; Resnick, S.I. (Eds.) Lévy Processes: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Tian, J.P.; Wang, J. Global stability for cholera epidemic models. Math. Biosci. 2011, 232, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Zhang, Q.M. Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention. Adv. Differ. Equ. 2017, 1–19. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Li, Y.; Kurths, J. Statistical solution to SDEs with α-stable Lévy noise via deep neural network. Int. J. Dyn. Control 2020, 8, 1129–1140. [Google Scholar] [CrossRef]
- Zuo, Z.; Yang, C.; Wang, Y. A new method for stability analysis of recurrent neural networks with interval time-varying delay. IEEE Trans. Neural Netw. 2009, 21, 339–344. [Google Scholar]
Parameter/Initial Condition | Value |
---|---|
x | |
Parameter/Initial Condition | Value |
---|---|
x | |
Citation | Field | Noise Type | Findings | Distinctive Points |
---|---|---|---|---|
[44] | Subsurface hydrology | Both Lévy and Gaussian | Highlighted advantages of fractional Lévy motion | Extended fractional Gaussian noise to 3D fractals |
[45] | Prognostics | Gaussian | Discussed Gaussian noise limitations | Emphasized Lévy noise for large noise levels |
[46] | SDEs | Both Lévy and Gaussian | Reviewed advantages of non-Gaussian noises | Illustrated Gaussian noise limitations in SDEs |
[47] | Image processing | Non-Gaussian | Explored superiority of non-Gaussian models | Highlighted robustness of Lévy noise in dense matching |
[48] | Financial time series | Lévy | Explored Lévy processes’ suitability | Compared Lévy and Gaussian processes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ain, Q.T.; Din, A.; Qiang, X.; Kou, Z. Dynamics for a Nonlinear Stochastic Cholera Epidemic Model under Lévy Noise. Fractal Fract. 2024, 8, 293. https://doi.org/10.3390/fractalfract8050293
Ain QT, Din A, Qiang X, Kou Z. Dynamics for a Nonlinear Stochastic Cholera Epidemic Model under Lévy Noise. Fractal and Fractional. 2024; 8(5):293. https://doi.org/10.3390/fractalfract8050293
Chicago/Turabian StyleAin, Qura Tul, Anwarud Din, Xiaoli Qiang, and Zheng Kou. 2024. "Dynamics for a Nonlinear Stochastic Cholera Epidemic Model under Lévy Noise" Fractal and Fractional 8, no. 5: 293. https://doi.org/10.3390/fractalfract8050293
APA StyleAin, Q. T., Din, A., Qiang, X., & Kou, Z. (2024). Dynamics for a Nonlinear Stochastic Cholera Epidemic Model under Lévy Noise. Fractal and Fractional, 8(5), 293. https://doi.org/10.3390/fractalfract8050293