Distributed Control for Non-Cooperative Systems Governed by Time-Fractional Hyperbolic Operators
Abstract
:1. Introduction
2. Notations
3. Existence and Uniqueness of the Solution
4. Existence and Uniqueness of an Optimal Control: A First Optimality Condition
5. Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fallahgoul, H.; Focardi, S.; Fabozzi, F. Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2023. [Google Scholar]
- Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific: Singapore, 2015. [Google Scholar]
- Antil, H.; Otárola, E. A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control. Optim. 2015, 53, 3432–3456. [Google Scholar] [CrossRef]
- Antil, H.; Otarola, E.; Salgado, A.J. A space-time fractional optimal control problem: Analysis and discretization. SIAM J. Control. Optim. 2016, 54, 1295–1328. [Google Scholar] [CrossRef]
- Ren, H.; Zhuang, X.; Rabczuk, T. A nonlocal operator method for solving partial differential equations. Comput. Methods Appl. Mech. Eng. 2020, 358, 112621. [Google Scholar] [CrossRef]
- Ren, H.; Zhuang, X.; Rabczuk, T. A higher order nonlocal operator method for solving partial differential equations. Comput. Methods Appl. Mech. Eng. 2020, 367, 113132. [Google Scholar] [CrossRef]
- Kavallaris, N.I.; Suzuki, T. Non-Local Partial Differential Equations for Engineering and Biology: Mathematical Modeling and Analysis; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Abdelhakem, M.; Mahmoud, D.; Baleanu, D.; El-kady, M. Shifted ultraspherical pseudo-Galerkin method for approximating the solutions of some types of ordinary fractional problems. Adv. Differ. Equ. 2021, 2021, 110. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Moussa, H.; Baleanu, D.; El-Kady, M. Shifted Chebyshev schemes for solving fractional optimal control problems. J. Vib. Control 2019, 25, 2143–2150. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Abdelhamied, D.; Alshehri, M.G.; El-Kady, M. Shifted Legendre fractional pseudospectral differentiation matrices for solving fractional differential problems. Fractals 2022, 30, 2240038. [Google Scholar] [CrossRef]
- Tröltzsch, F. Optimal Control of Partial Differential Equations: Theory, Methods, and Applications; American Mathematical Soc.: Providence, RI, USA, 2010; Volume 112. [Google Scholar]
- Lions, J.L. Optimal Control of Systems Governed by Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 1971; Volume 170. [Google Scholar]
- Lions, J.L. Some Methods in the Mathematical Analysis of Systems and Their Control; Science Press: Beijing, China, 1981. [Google Scholar]
- Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S. Optimization with PDE Constraints; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 23. [Google Scholar]
- Qamlo, A.; Serag, H.; El-Zahrany, E. Optimal control for non-cooperative parabolic systems with conjugation conditions. Eur. J. Sci. Res. 2015, 131, 215–226. [Google Scholar]
- Fleckinger, J.; Serag, H. Semilinear cooperative elliptic systems on Rn. Rend. Mat. Vol. Seri VII 1995, 15, 89–108. [Google Scholar]
- Serag, H.; Qamlo, A. Borundary control for non-cooperative elliptic systems. Adv. Model. Anal.-A- 2001, 38, 31–42. [Google Scholar]
- Özdemir, N.; Karadeniz, D.; İskender, B.B. Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys. Lett. A 2009, 373, 221–226. [Google Scholar] [CrossRef]
- Ma, X.X.; Liu, S.; Li, X.; Zhao, X.W. Fractional optimal control problems with both integer-order and Atangana–Baleanu Caputo derivatives. Asian J. Control 2023, 25, 4624–4637. [Google Scholar] [CrossRef]
- Kilbas, A. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Mophou, G.; Joseph, C. Optimal control with final observation of a fractional diffusion wave equation. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2016. Available online: https://hal.science/hal-02548503/ (accessed on 13 May 2024).
- Adams, R.A.; Fournier, J.J. Sobolev Spaces; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Leoni, G. A First Course in Sobolev Spaces; American Mathematical Soc.: Providence, RI, USA, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serag, H.M.; Almoneef, A.A.; El-Badawy, M.; Hyder, A.-A. Distributed Control for Non-Cooperative Systems Governed by Time-Fractional Hyperbolic Operators. Fractal Fract. 2024, 8, 295. https://doi.org/10.3390/fractalfract8050295
Serag HM, Almoneef AA, El-Badawy M, Hyder A-A. Distributed Control for Non-Cooperative Systems Governed by Time-Fractional Hyperbolic Operators. Fractal and Fractional. 2024; 8(5):295. https://doi.org/10.3390/fractalfract8050295
Chicago/Turabian StyleSerag, Hassan M., Areej A. Almoneef, Mahmoud El-Badawy, and Abd-Allah Hyder. 2024. "Distributed Control for Non-Cooperative Systems Governed by Time-Fractional Hyperbolic Operators" Fractal and Fractional 8, no. 5: 295. https://doi.org/10.3390/fractalfract8050295
APA StyleSerag, H. M., Almoneef, A. A., El-Badawy, M., & Hyder, A. -A. (2024). Distributed Control for Non-Cooperative Systems Governed by Time-Fractional Hyperbolic Operators. Fractal and Fractional, 8(5), 295. https://doi.org/10.3390/fractalfract8050295