Noether’s Theorem of Herglotz Type for Fractional Lagrange System with Nonholonomic Constraints
Abstract
:1. Introduction
2. Fractional Derivative
3. Equations of Motion
4. Herglotz-Type Noether Symmetry
5. Noether Theorem
6. Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: San Diego, CA, USA, 1974. [Google Scholar]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Lopes, A.M.; Chen, L.P. Fractional order systems and their applications. Fractal Fract. 2022, 6, 389. [Google Scholar] [CrossRef]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 3581–3592. [Google Scholar] [CrossRef]
- Agrawal, O.P. Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef]
- Agrawal, O.P. Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 2007, 40, 6287–6303. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Konjik, S.; Pilipović, S.; Simić, S. Variational problems with fractional derivatives: Invariance conditions and Noether’s theorem. Nonlinear Anal. 2009, 71, 1504–1517. [Google Scholar] [CrossRef]
- Zhang, Y. Lie symmetry and conserved quantity for fractional Birkhoffian system. J. Suzhou Univ. Sci. Technol. Nat. Sci. 2017, 34, 1–7. [Google Scholar]
- Cresson, J.; Szafranska, A. About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical jost method of proof. Fract. Calc. Appl. Anal. 2019, 22, 871–898. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Tunc, C. Analogues to Lie method and Noether’s theorem in fractal calculus. Fractal Fract. 2019, 3, 25. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y. Caputo Δ-type fractional time-scales Noether theorem of Birkhoffian systems. Acta Mech. 2022, 233, 4487–4503. [Google Scholar] [CrossRef]
- Wang, P. Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane. Chin. Phys. B 2023, 32, 074501. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Janev, M.; Pilipović, S. Noether’s theorem for variational problems of Herglotz type with real and complex order fractional derivatives. Acta Mech. 2021, 232, 1131–1146. [Google Scholar] [CrossRef]
- Song, C.J. Conserved quantities for constrained Hamiltonian system within combined fractional derivatives. Fractal Fract. 2022, 6, 683. [Google Scholar] [CrossRef]
- Song, C.J. Further research for Lagrangian mechanics within generalized fractional operators. Fractal Fract. 2023, 7, 421. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional classical mechanics: Action principle, Euler–Lagrange equations and Noether theorem. Physica D 2024, 457, 133975. [Google Scholar] [CrossRef]
- Guenther, R.B.; Guenther, C.M.; Gottsch, J.A. The Herglotz Lectures on Contact Transformations and Hamiltonian Systems; Juliusz Center for Nonlinear Studies: Torun, Poland, 1996. [Google Scholar]
- Georgieva, B.; Guenther, R. First Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 2002, 20, 261–273. [Google Scholar] [CrossRef]
- Santos, S.P.S.; Martins, N.; Torres, D.F.M. Higher-order variational problems of Herglotz type. Vietnam J. Math. 2014, 42, 409–419. [Google Scholar] [CrossRef]
- Santos, S.P.S.; Martins, N.; Torres, D.F.M. Variational problems of Herglotz type with time delay: DuBois-Reymond condition and Noether’s first theorem. Discrete Contin. Dyn. Syst. 2015, 35, 4593–4610. [Google Scholar] [CrossRef]
- Almeida, R.; Malinowska, A.B. Fractional variational principle of Herglotz. Discrete Contin. Dyn. Syst. Ser. B. 2014, 19, 2367–2381. [Google Scholar] [CrossRef]
- Zhang, Y. Recent advances on Herglotz’s generalized variational principle of non-conservative dynamics. Transac. Nanjing Univ. Aero. Astro. 2020, 37, 13–26. [Google Scholar]
- Zhang, Y.; Tian, X. Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem. Phys. Lett. A 2019, 383, 691–696. [Google Scholar] [CrossRef]
- Dong, X.C.; Zhang, Y. Herglotz-type principle and first integrals for nonholonomic systems in phase space. Acta Mech. 2023, 234, 6083–6095. [Google Scholar] [CrossRef]
- Neimark, J.I.; Fufaev, N.A. Dynamics of Nonolonomic Systems; American Mathematical Society: Providence, RI, USA, 1972. [Google Scholar]
- Mei, F.X. Nonholonomic mechanics. Appl. Mech. Rev. 2000, 53, 283–305. [Google Scholar] [CrossRef]
- Meijaard, J.P.; Papadopoulos, J.M.; Ruina, A.; Schwab, A.L. Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. P. Roy. Soc. A-Math. Phy. 2007, 463, 1955–1982. [Google Scholar] [CrossRef]
- Kang, H.K.; Liu, C.S.; Jia, Y.B. Inverse dynamics and energy optimal trajectories for a wheeled mobile robot. Int. J. Mech. Sci. 2017, 134, 576–588. [Google Scholar] [CrossRef]
- Xiong, J.M.; Wang, N.N.; Liu, C.S. Bicycle dynamics and its circular solution on a revolution surface. Acta Mech. Sin. 2020, 36, 220–233. [Google Scholar] [CrossRef]
- He, X.D.; Geng, Z.Y. Consensus-based formation control for nonholonomic vehicles with parallel desired formations. Int. J. Control. 2021, 94, 507–520. [Google Scholar] [CrossRef]
- Wang, B.F.; Li, S.; Guo, J.; Chen, Q.W. Car-like mobile robot path planning in rough terrain using multi-objective particle swarm optimization algorithm. Neurocomputing 2018, 282, 42–51. [Google Scholar] [CrossRef]
- Ye, J. Hybrid trigonometric compound function neural networks for tracking control of a nonholonomic mobile robot. Intell. Serv. Robot. 2014, 7, 235–244. [Google Scholar] [CrossRef]
- Pappalardo, C.M.; Guida, D. On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots. Arch. Appl. Mech. 2019, 89, 669–698. [Google Scholar] [CrossRef]
- Cen, H.; Singh, B.K. Nonholonomic wheeled mobile robot trajectory tracking control based on improved sliding mode variable structure. Wirel. Commun. Mob. Comut. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Zaslavsky, G.M. Nonholonomic constraints with fractional derivatives. J. Phys. A-Math. Gen. 2006, 39, 9797–9815. [Google Scholar] [CrossRef]
- Vacaru, S.I. Fractional nonholonomic Ricci flows. Chaos Solitons Fractals 2012, 45, 1266–1276. [Google Scholar] [CrossRef]
- Fu, J.L.; Fu, L.P. Noether symmetry of fractional nonholonomic systems and its inverse problem. Acta Sci. Nat. Univ. Pekin. 2016, 52, 643–652. [Google Scholar]
- Agrawal, O.P. Generalized Euler—Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J. Vib. Control. 2007, 13, 1217–1237. [Google Scholar] [CrossRef]
- Agrawal, O.P.; Muslih, S.I.; Baleanu, D. Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simulat. 2011, 16, 4756–4767. [Google Scholar] [CrossRef]
- Novoselov, V.S. Variational Methods in Mechanics; LSU: Baton Rouge, LA, USA, 1966. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Gelfand, I.M.; Fomin, S.V. Calculus of Variations; Prentice-Hall: London, UK, 1963. [Google Scholar]
- Vujanovic, B.D.; Jones, S.E. Variational Methods in Nonconservative Phenomena; Academic Press: San Diego, CA, USA, 1989. [Google Scholar]
- Sarlet, W.; Cantrijn, F. Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 1981, 23, 467–494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Zhang, Y. Noether’s Theorem of Herglotz Type for Fractional Lagrange System with Nonholonomic Constraints. Fractal Fract. 2024, 8, 296. https://doi.org/10.3390/fractalfract8050296
Deng Y, Zhang Y. Noether’s Theorem of Herglotz Type for Fractional Lagrange System with Nonholonomic Constraints. Fractal and Fractional. 2024; 8(5):296. https://doi.org/10.3390/fractalfract8050296
Chicago/Turabian StyleDeng, Yuanyuan, and Yi Zhang. 2024. "Noether’s Theorem of Herglotz Type for Fractional Lagrange System with Nonholonomic Constraints" Fractal and Fractional 8, no. 5: 296. https://doi.org/10.3390/fractalfract8050296
APA StyleDeng, Y., & Zhang, Y. (2024). Noether’s Theorem of Herglotz Type for Fractional Lagrange System with Nonholonomic Constraints. Fractal and Fractional, 8(5), 296. https://doi.org/10.3390/fractalfract8050296