Next Article in Journal
Iterative Learning Formation Control via Input Sharing for Fractional-Order Singular Multi-Agent Systems with Local Lipschitz Nonlinearity
Previous Article in Journal
Further Hermite–Hadamard-Type Inequalities for Fractional Integrals with Exponential Kernels
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Common Attractors for Generalized F-Iterated Function Systems in G-Metric Spaces

1
Department of Mathematical Sciences, University of South Africa, Florida 0003, South Africa
2
Division of Mathematics and Physics, School of Education, Culture and Communication, Mälardalen University, Box 883, 72123 Västerås, Sweden
*
Author to whom correspondence should be addressed.
Fractal Fract. 2024, 8(6), 346; https://doi.org/10.3390/fractalfract8060346
Submission received: 7 April 2024 / Revised: 4 June 2024 / Accepted: 4 June 2024 / Published: 10 June 2024
(This article belongs to the Section General Mathematics, Analysis)

Abstract

:
In this paper, we study the generalized F-iterated function system in G-metric space. Several results of common attractors of generalized iterated function systems obtained by using generalized F-Hutchinson operators are also established. We prove that the triplet of F-Hutchinson operators defined for a finite number of general contractive mappings on a complete G-metric space is itself a generalized F-contraction mapping on a space of compact sets. We also present several examples in 2-D and 3-D for our results.

1. Introduction

Fixed point theory has attracted much attention in the past few years with a vast range of applications both within and beyond mathematics [1,2,3,4]. Mustafa and Sims [5] generalized metric space by introducing the structure of G-metric space. Several researchers derived some fixed point theorems for maps satisfying a variety of contractive constraints in G-metric space [3,6,7,8,9,10,11,12,13,14].
In his 1981 seminal work, Hutchinson [15] established mathematical foundations for iterated function systems (IFSs) and showed that the Hutchinson operator defined on R k has as its fixed point a bounded and closed subset of R k called an attractor of IFS [16,17]. Several researchers have obtained useful results for iterated function systems (see [18,19] and references therein). Nazir, Silvestrov, and Abbas [20] established fractals by employing F-Hutchinson maps in the setup of metric space. Recently, Navascués [21] presented the approximation of fixed points and fractal functions by means of different iterative algorithms. Navascués et al. [22] established some useful results of the collage type for Reich mutual contractions in b-metric and strong b-metric spaces. Thangaraj et al. [23] constructed an iterated function system called Controlled Kannan Iterated Function System based on Kannan contraction maps in a controlled metric space and used it to develop a new kind of invariant set, known as a Controlled Kannan Attractor or Controlled Kannan Fractal. Recently, Nazir and Silvestrov [24] investigated a generalized iterated function system based on pair of self-mappings and obtained the common attractors of these maps in complete dislocated metric spaces, established the well-posedness of the attractor problems of rational contraction maps in the framework of dislocated metric spaces, and obtained the generalized collage theorem in dislocated metric spaces.
In this paper, we consider the triplet of generalized F-contractive operators and define generalized F-Hutchinson operators to obtain the common attractors in complete G-metric spaces. The contractive conditions are different from those in [24], and both dislocated metric spaces and G-metric spaces are independent to each other. We construct some new common attractor point results based on a generalized F-iterated function system in G-metric spaces. We define F-Hutchinson operators with a finite number of general F-contractive operators in the complete G-metric space and show that these operators are themselves general F-contractions. It is worth mentioning that we are obtaining these results without using any type of commuting conditions of selfmaps in non-symmetric G-metric space. At the end, we present several nontrivial examples of common attractors as a result of F-Hutchinson operators.
Mustafa and Sims [5] established the following notion of G-metric.
Definition 1.
Let Z be a non-empty set. A map with three arguments (ternary map) G : Z × Z × Z [ 0 , + ) is called G-metric if
G1:
G ( μ , ν , ω ) = 0 if μ = ν = ω ,
G2:
0 < G ( μ , ν , ν ) for all μ , ν Z with μ ν ,
G3:
G ( μ , μ , ν ) G ( μ , ν , ω ) for all μ , ν , ω Z with ν ω ,
G4:
G is symmetric mapping in all its variables, meaning that it is invariant under any permutation of its variables, that is, G ( σ ( μ ) , σ ( ν ) , σ ( ω ) ) = G ( μ , ν , ω ) , for all permutations σ of { μ , ν , ω } .
G5:
G ( μ , ν , ω ) G ( μ , ϰ , ϰ ) + G ( ϰ , ν , ω ) for all μ , ν , ω , ϰ Z .
Then, ( Z , G ) is called G-metric space. Further, ( Z , G ) is called symmetric G-metric space whenever G ( μ , μ , ϰ ) = G ( μ , ϰ , ϰ ) for all μ , ϰ Z , which can be written also as G ( ϰ , μ , ϰ ) = G ( μ , ϰ , μ ) , using the invariance of G under permutations of variables (axiom G 4 ).
Example 1
([5,25,26]). Let ( Z , d ) be a metric space. Then, G : Z × Z × Z [ 0 , + ) , defined by
G ( μ , ν , ω ) = max { d ( μ , ν ) , d ( ν , ω ) , d ( μ , ω ) } , G ( μ , ν , ω ) = d ( μ , ν ) + d ( ν , ω ) + d ( μ , ω )
for all μ , ν , ω Z , are G-metrics on Z.
Example 2.
Let ( Z , G ) be G-metric space and d G : Z × Z [ 0 , + ) defined as
d G ( u , v ) = G ( u , v , v ) + G ( v , u , u )   for   all u , v Z .
Then, d G , Z is a metric space.
Definition 2
([25]). Let { y n } be a sequence in G-metric space ( Z , G ) . Then,
(a)
{ y n } Z is G-convergent sequence if, for any ε > 0 , there is a point y Z and a natural number N such that for all n , m N ,   G ( y , y n , y m ) < ε ;
(b)
{ y n } Z is G-Cauchy sequence if, for any λ > 0 , there is an N N such that for all l , n , m N ,   G ( y n , y m , y l ) < λ ;
(c)
( Z , G ) is G-complete when each G-Cauchy sequence in G-metric space is convergent in Z .   { y n } converges to y Z whenever G ( y m , y n , y ) 0 as m , n and { y n } is Cauchy whenever G ( y m , y n , y l ) 0 as m , n , l .
Definition 3
([25]). Let ( Z , G ) and ( Z , G ) be two G-metric spaces. Map h : ( Z , G ) ( Z , G ) is G-continuous at a point b Z when for an λ > 0 , there exists δ > 0 such that u , v Z and G ( b , u , v ) < δ implies G ( h ( b ) , h ( u ) , h ( v ) ) < λ . Further, h is G-continuous on Z when it is G-continuous on every b Z .
Proposition 1
([25]). Let ( Z , G ) be G-metric space. Then,
(i)
G ( u , v , w ) is simultaneously continuous map,
(ii)
G ( w , v , v ) 2 G ( v , w , w ) for w , v Z .
Consider, next, the following subsets of G-metric space ( Z , G ) (see [27]):
  • N ( Z ) = { U : U is   a   non   empty   subset   of Z } .
  • B ( Z ) = { W : U is   a   non   empty   bounded   subset   of Z } .
  • C L ( Z ) = { U : U is   a   non   empty   closed   subset   of Z } .
  • C B ( Z ) = { U : U is   a   non   empty   closed   and   bounded   subset   of Z } .
  • C G ( Z ) = { U : U is   a   non   empty   compact   set   in Z } .
Remark 1
([28]). In G-metric space ( Z , G ) , let H G : C B ( Z ) × C B ( Z ) × C B ( Z ) [ 0 , + ) be a mapping defined as
H G ( D , E , F ) = max { sup u D G ( u , E , F ) , sup v E G ( v , F , D ) , sup w F G ( w , D , E ) }
for all E , D , F C B ( Z ) , where G ( u , E , D ) = inf { G ( u , v , x ) : v E , x D } is called a Hausdorff G-metric on C B ( Z ) .
If ( Z , G ) is G-complete metric space, then the H G -complete metric space ( C B ( Y ) , H G ) is also complete.
Lemma 1.
In G-metric space ( Z , G ) , for P , Q , R , S , U , V C G ( Z ) , the following are satisfied:
(i)
If Q R , then sup k P G ( k , R , R ) sup k P G ( k , Q , Q ) ;
(ii)
sup x P Q G ( x , R , U ) = max { sup k P G ( k , R , U ) , sup Q G ( , R , U ) } ;
(iii)
H G ( P Q , R S , U V ) max { H G ( P , R , U ) , H G ( Q , S , V ) } .
Proof. 
(i) Since Q R , for all r P ,
G ( r , R , R ) = inf { G ( r , μ , μ ) : μ R } inf { G ( r , , ) : Q } = G r , Q , Q ,
this implies that
sup r P G ( r , R , R ) sup r P G ( r , Q , Q ) .
(ii) Note that
sup x P Q G ( x , R , U ) = max { sup { G x , R , U : x P } , sup { G x , R , U : x Q } } = max { sup k P G k , R , U , sup Q G , R , U } .
(iii) Since
sup x P Q G ( x , R S , U V ) = max { sup k P G ( k , R S , U V ) , sup Q G ( , Q S , U V ) } ( from   ( ii ) ) max { sup k P G ( k , R , U ) , sup Q G ( , S , V ) } ( from   ( i ) ) max max { sup k P G ( k , R , U ) , sup μ R G ( μ , P , U ) } , max { sup Q G ( , S , V ) , sup η S G ( η , Q , V ) } max H G P , R , U , H G ( Q , S , V ) .
Similarly,
sup y R S G ( y , P Q , U V ) max H G P , R , U , H G ( Q , S , V ) , sup z U V G ( y , P Q , R S ) max H G P , R , U , H G ( Q , S , V ) .
Hence,
H G ( P Q , U V , R S ) = max sup x P Q G ( x , R S , U V ) , sup y R S G ( y , P Q , U V ) , sup z U V G ( y , P Q , R S ) max H G P , R , U , H G ( Q , S , V ) .
 □
Wardowski [29] defined F-contraction maps for fixed point results as follows. Let F : R + R be a continuous map satisfying the following conditions:
( F 1 )
For α , β R + such that α < β implies that F ( α ) < F ( β ) .
( F 2 )
For α k > 0 ,   k = 1 , 2 , 3 , , lim k α k = 0 and lim k F α k = are equivalent.
( F 3 )
There exists θ 0 , 1 such that lim α 0 + α θ F ( α ) = 0
We denote a set ϝ as a collection of all F-contractions.
Definition 4.
In G-metric space ( Z , G ) , a self-map h : Z Z is called an F-contraction on Z if for all u , v , w Z , there exists F ϝ and τ > 0 such that
τ + F G h u , h v , h w F G u , v , w
whenever G h u , h v , h w > 0 .
We discuss F-iterated function systems in G-metric space. First, we define generalized F-contractive operators as a preliminary result.
Definition 5.
In G-metric space ( Z , G ) , let f , g , h : Z Z be three self-mappings. A triplet f , g , h is called a generalized F-contraction mappings if for all u , v , w Z , there exists F ϝ and τ > 0 such that
τ + F G f u , g v , h w F G u , v , w
whenever G f u , g v , h w > 0 .
Theorem 1.
Consider G-metric space ( Z , G ) and let f , g , h : Z Z be continuous maps. If the triplet of mappings f , g , h is a generalized F-contraction, then
(i)
the elements in C G ( Z ) are mapped to elements in C G ( Z ) under f ,   g and h ;
(ii)
if for an arbitrary U C G ( Z ) , the mappings f , h , g : C G ( Z ) C G ( Z ) are defined as
f ( U ) = { f ( u ) : u U } , g ( U ) = { g ( v ) : v U } , h ( U ) = { h ( w ) : w U } ,
then, the triplet f , g , h is a generalized F-contraction on ( C G ( Z ) , H G ) .
Proof. 
(i) Since f is a continuous and the image of a compact subset under a continuous mapping, f : Z Z is compact, then U C G ( Z ) gives   f ( U ) C G ( Z ) . Also, U C G ( Z ) implies   that   g ( U ) C G ( Z )   and   h ( U ) C G ( Z ) .
ii Let Q , R , N C G ( Z ) . Since the triplet f , g , h is a generalized F-contraction mappings on Z. Then,
G f u , g v , h w < G u , v , w
for all u , v , w Z such that G f u , g v , h w > 0 . Now,
G f u , g R , h N = inf { G f u , g v , h w : v R , w N } < inf { G u , v , w : v R , w N } = G u , R , N , G g v , f Q , h N = inf { G g v , f u , h t w 1 : u Q , w N } < inf { G v , u , w : u Q , w N } = G v , Q , N , G h w , f Q , g R = inf { G h w , f u , g v : u Q , v R } < inf { G w , u , v : u Q , v R } = G w , Q , R ,
and hence,
H G f Q , g R , h N = max { sup u L G ( f u , g R , h N ) , sup v M G ( g v , f Q , h N ) , sup w N G ( h w , f Q , g R ) } < max { sup u L G ( u , R , N ) , sup v M G ( v , Q , N ) , sup w N G ( w , Q , R ) } = H G Q , R , N .
By ( F 1 ) of F-contraction,
F H G f Q , g R , h N < F H G Q , R , N .
Consequently, there exists τ * > 0 such that
τ * + F H G f Q , g R , h N F H G Q , R , N .
Thus, the triplet f , g , h is a generalized F-contraction mappings on ( C G ( Z ) , H G ) . □
Proposition 2.
In G-metric space ( Z , G ) , suppose the mappings f k , g k , h k : Z Z for k = 1 , , q are continuous and satisfy
τ + F G f k u , g k v , h k w F G u , v , w
for all u , v , w Z such that G f k u , g k v , h k w > 0 for each k 1 , , q . Then, the mappings Υ , Ψ , Φ : C G ( Z ) C G ( Z ) defined as
Υ ( Q ) = f 1 ( Q ) f q ( Q ) , for   each   Q C G ( Z ) , Ψ ( R ) = g 1 ( R ) g q ( R ) ,   for   each   R C G ( Z ) Φ ( N ) = h 1 ( N ) h q ( N ) , for   each   N C G ( Z )
also satisfy
τ + H G Υ Q , Ψ R , Φ N F H G Q , R , N for   all   Q , R , N C G ( Z ) ,
whenever H G Υ Q , Ψ R , Φ N > 0 , that is, the triplet Υ , Ψ , Φ is also a generalized F-contraction on C G Z .
Proof. 
We give a proof by induction. If q = 1 , then, the result is true trivially. For q = 2 , let f k , g k , h k , : Z Z ,   k { 1 , 2 } be self-mappings such that f 1 , g 1 , h 1 and f 2 , g 2 , h 2 are triplets of generalized F-contractions. Then, for Q , R , N C G ( Z ) and from Lemma 1 (iii),
τ + F H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) = τ + F H G ( f 1 ( Q ) f 2 ( Q ) , g 1 ( R ) g 2 ( R ) , h 1 ( N ) h 2 ( N ) ) τ + F max { H G ( f 1 ( Q ) , g 1 ( R ) , h 1 ( N ) ) , H G ( f 2 ( Q ) , g 2 ( R ) , h 2 ( N ) ) } F H G ( Q , R , N ) .
Hence, the result is true for q = 2 . Suppose that for q = n , the result holds, that is,
τ + F H G l = 1 n f l ( Q ) , l = 1 n g l ( Q ) , l = 1 n h l ( Q ) F H G Q , R , N for   all   Q , R , N C G ( Z ) ,
whenever H G l = 1 n f l ( Q ) , l = 1 n g l ( Q ) , l = 1 n h l ( Q ) > 0 . For
Υ ( Q ) = l = 1 n + 1 f l ( Q ) , Ψ ( Q ) = l = 1 n + 1 g l ( Q ) , Φ ( Q ) = l = 1 n + 1 h l ( Q )
for each Q C G ( Z ) , and from Lemma 1 (iii), we have
τ + F H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) = τ + F H G ( l = 1 n + 1 f l ( Q ) , l = 1 n + 1 g l ( R ) , l = 1 n + 1 h l ( N ) ) = τ + F H G ( l = 1 n f l ( Q ) f n + 1 ( Q ) , l = 1 n g l ( R ) g n + 1 ( R ) , l = 1 n h l ( N ) h n + 1 ( N ) ) τ + F max { H G ( l = 1 n f l ( Q ) , l = 1 n g l ( R ) , l = 1 n h l ( N ) ) , H G ( f n + 1 ( Q ) , g n + 1 ( R ) , h n + 1 ( N ) ) } F H G ( Q , R , N ) .
Hence, the result is true for q = n + 1 . Thus, the triplet Υ , Ψ , Φ is also a generalized F-contraction on C G Z .  □
Definition 6.
In G-metric space ( Z , G ) , let Υ , Ψ , Φ : C G ( Z ) C G ( Z ) . The mappings Υ , Ψ , Φ are called generalized F-Hutchinson contractive operators if for Q , R , N C G ( Z ) obeying H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) > 0 , it holds that
τ + F H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) F M Υ , Ψ , Φ ( Q , R , N )
where     M Υ , Ψ , Φ ( Q , R , N ) = max { H G ( Q , R , N ) , H G ( Q , Υ ( Q ) , Υ ( Q ) ) , H G ( R , Ψ R , Ψ R ) , H G ( N , Φ N , Φ N ) } .
Definition 7.
In a complete G-metric space ( Z , G ) , let f k , g k , h k : Z Z , k = 1 , , q be continuous maps, where each triplet f k , g k , h k for k = 1 , , q is a generalized F-contraction, then { Z ; f k , g k , h k , k = 1 , , q } is called the generalized F-iterated function system.
Consequently, a generalized F-iterated function system in G-metric space is a finite collection of generalized F-contractions on Z .
Definition 8.
Let ( Z , G ) be a complete G-metric space and U Z a non-empty compact set. Then, U is the common attractor of the mappings Υ , Ψ , Φ : C G ( Z ) C G ( Z ) if
(i)
Υ ( U ) = Ψ ( U ) = Φ ( U ) = U
(ii)
There exists an open set V Z satisfying U V and lim k + Υ k ( Q ) = lim k + Ψ k ( R ) = lim k + Φ k ( N ) = U for any compact sets Q , R , N V , where the limit is taken relative to the G-Hausdorff metric.

2. Main Results

Now, we establish the results of common attractors of generalized F-Hutchinson contraction in G-metric spaces.
Theorem 2.
In a complete G-metric space ( Z , G ) , let { Z ; ( f k , g k , h k ) , k = 1 , , q } be the generalized F-iterated function system. Define Υ , Ψ , Φ : C G ( Z ) C G ( Z ) by
Υ ( Q ) = f 1 ( Q ) f q ( Q ) , Ψ ( R ) = g 1 ( R ) g q ( R ) , Φ ( N ) = h 1 ( N ) h q ( N )
for Q , R , N C G ( Z ) . If the mappings Υ , Ψ , Φ are generalized F-Hutchinson contractive operators, then Υ , Ψ and Φ have a unique common attractor U * C G ( Z ) , that is,
U * = Υ U * = Ψ U * = Φ U * .
Additionally, for any arbitrarily chosen initial set R 0 C G ( Z ) , the sequence
{ R 0 , Υ R 0 , Ψ Υ R 0 , Φ Ψ Υ R 0 , Υ Φ Ψ Υ R 0 , }
of compact sets converges to the common attractor U * .
Proof. 
We show that any attractor of Υ is an attractor of Ψ and Φ . To that end, we assume that U * C G ( Z ) is such that Υ ( U * ) = U * . We need to show that U * = Ψ ( U * ) = Φ ( U * ) . If not, then as the mappings Υ , Ψ , Φ are generalized F-Hutchinson contractive operators, for H G ( Υ ( U * ) , Ψ ( U * ) , Φ ( U * ) ) > 0 , by using ( G 3 ), we obtain
τ + F H G ( U * , Ψ ( U * ) , Φ ( U * ) ) = τ + F H G ( Υ ( U * ) , Ψ ( U * ) , Φ ( U * ) ) F M Υ , Ψ , Φ ( U * , U * , U * ) ) ,
where
M Υ , Ψ , Φ ( U * , U * , U * ) = max { H G ( U * , U * , U * ) , H G ( U * , Υ ( U * ) , Υ ( U * ) ) , H G ( U * , Ψ U * , Ψ U * ) , H G ( U * , Φ U * , Φ U * ) } = max { H G ( U * , Ψ U * , Ψ U * ) , H G ( U * , Φ U * , Φ U * ) } max { H G ( U * , Ψ U * , Φ U * ) , H G ( U * , Φ U * , Ψ U * ) } = H G ( U * , Ψ U * , Φ U * ) .
From (2), it follows that
τ + F H G ( U * , Ψ ( U * ) , Φ ( U * ) ) F H G ( U * , Ψ U * , Φ U * ) ,
where τ > 0 , a contradiction. Thus, H G ( U * , Ψ ( U * ) , Φ ( U * ) ) = 0 , and so we obtain U * = Ψ ( U * ) = Φ ( U * ) . In an analogous manner, for U * = Φ ( U * ) or for U * = Ψ ( U * ) , we obtain U * as the common attractor of Υ , Ψ , and Φ .
We proceed by showing that Υ ,   Ψ , and Φ have a unique common attractor. Let R 0 C G ( Z ) be chosen arbitrary. Define a sequence { R k } by R 3 k + 1 = Υ ( R 3 k ) , R 3 k + 2 = Ψ ( R 3 k + 1 ) and R 3 k + 3 = Φ ( R 3 k + 2 ) ,   k = 0 , 1 , 2 , . If R k = R k + 1 for some k , with k = 3 n , then U * = R 3 k is an attractor of Υ and from the Proof above, U * is a common attractor for Υ ,   Ψ and Φ . The same is true for k = 3 n + 1 or k = 3 n + 2 . We assume that R k R k + 1 for all k N , then by using ( G 3 ) , we have
τ + F H G ( R 3 k + 1 , R 3 k + 2 , R 3 k + 3 ) = τ + F H G ( Υ ( R 3 k ) , Ψ R 3 k + 1 , Φ R 3 k + 2 ) F M Υ , Ψ , Φ ( R 3 k , R 3 k + 1 , R 3 k + 2 ) ,
where
M Υ , Ψ , Φ ( R 3 k , R 3 k + 1 , R 3 k + 2 ) = max { H G ( R 3 k , R 3 k + 1 , R 3 k + 2 ) , H G ( R 3 k , Υ ( R 3 k ) , Υ ( R 3 k ) ) , H G ( R 3 k + 1 , Ψ R 3 k + 1 , Ψ R 3 k + 1 ) , H G ( R 3 k + 2 , Φ R 3 k + 2 , Φ R 3 k + 2 ) } = max { H G ( R 3 k , R 3 k + 1 , R 3 k + 2 ) , H G ( R 3 k , R 3 k + 1 , R 3 k + 1 ) , H G ( R 3 k + 1 , R 3 k + 2 , R 3 k + 2 ) , H G ( R 3 k + 2 , R 3 k + 3 , R 3 k + 3 ) } max { H G ( R 3 k , R 3 k + 1 , R 3 k + 2 ) , H G ( R 3 k , R 3 k + 1 , R 3 k + 2 ) , H G ( R 3 k + 1 , R 3 k + 2 , R 3 k ) , H G ( R 3 k + 2 , R 3 k + 3 , R 3 k + 1 ) } = H G ( R 3 k , R 3 k + 1 , R 3 k + 2 ) .
Thus from (3), we have
τ + F H G ( R 3 k + 1 , R 3 k + 2 , R 3 k + 3 ) F H G ( R 3 k , R 3 k + 1 , R 3 k + 2 ) .
Similarly, one can show that
τ + F H G ( R 3 k + 2 , R 3 k + 3 , R 3 k + 4 ) F H G ( R 3 k + 1 , R 3 k + 2 , R 3 k + 3 )
and
τ + F H G ( R 3 k + 3 , R 3 k + 4 , R 3 k + 5 ) F H G ( R 3 k + 2 , R 3 k + 3 , R 3 k + 4 ) .
Thus, for all k ,
τ + F H G ( R k + 1 , R k + 2 , R k + 3 ) F H G R k , R k + 1 , R k + 2 .
Thus,
F H G ( R k + 1 , R k + 2 , R k + 3 ) F H G ( R k , R k + 1 , R k + 2 ) τ F H G ( R k 1 , R k , R k + 1 ) 2 τ F H G ( R 0 , R 1 , R 2 ) k τ
and we obtain that lim k F H G ( R k + 1 , R k + 2 , R k + 3 ) = which together with ( F 2 ) implies that lim k H G ( R k + 1 , R k + 2 , R k + 3 ) = 0 . Now by ( F 3 ), there exists h 0 , 1 such that
lim k [ H G ( R k + 1 , R k + 2 , R k + 3 ) ] h F H G ( R k + 1 , R k + 2 , R k + 3 ) = 0 .
Thus,
[ H G ( R k + 1 , R k + 2 , R k + 3 ) ] h F H G ( R k + 1 , R k + 2 , R k + 3 ) [ H G ( R k + 1 , R k + 2 , R k + 3 ) ] h F H G ( R 0 , R 1 , R 2 ) k τ [ H G ( R k + 1 , R k + 2 , R k + 3 ) ] h 0 .
On taking limit as k , we obtain
lim k k [ H G ( R k + 1 , R k + 2 , R k + 3 ) ] h = 0 .
As lim k k 1 h H G ( R k + 1 , R k + 2 , R k + 3 ) = 0 , there exists n 1 N such that
k 1 h H G ( R k + 1 , R k + 2 , R k + 3 ) 1
for all n n 1 . So we have H G ( R k + 1 , R k + 2 , R k + 3 ) 1 k 1 / h for all k n 1 . Now, for l , m , k , with l > m > k ,
H G ( R k , R m , R l ) H G ( R k , R k + 1 , R k + 1 ) + H G ( R k + 1 , R k + 2 , R k + 2 ) + + H G ( R l 1 , R l 1 , R l ) H G ( R k , R k + 1 , R k + 2 ) + H G ( R k + 1 , R k + 2 , R k + 3 ) + + H G ( R l 2 , R l 1 , R l ) i = k 1 i 1 / h .
By the convergence of the series i = 1 1 i 1 / h , we obtain H G ( R k , R m , R l ) 0 as k , m , l + . Thus, { R k } is G-Cauchy sequence in C G ( Z ) . Since ( C G ( Z ) , H G ) is a complete G-metric space, there is U * C G ( Z ) such that lim k + R k = U * , that is, lim k + H G R k , R k , U * = 0 .
To prove that Υ U * = U * , when assuming the contrary we have
τ + F H G ( Υ U * , R 3 k + 2 , R 3 k + 3 ) = τ + F H G ( Υ U * , Ψ R 3 k + 1 , Φ R 3 k + 2 ) F M Υ , Ψ , Φ ( U * , R 3 k + 1 , R 3 k + 2 ) ,
where
M Υ , Ψ , Φ ( U * , R 3 k + 1 , R 3 k + 2 ) = max { H G ( Υ U * , R 3 k + 1 , R 3 k + 2 ) , H G ( U * , Υ U * , Υ U * ) , H G ( R 3 k + 1 , Ψ R 3 k + 1 , Ψ R 3 k + 1 ) , H G ( R 3 k + 2 , Φ R 3 k + 2 , Φ R 3 k + 2 ) } max { H G ( U * , R 3 k + 1 , R 3 k + 2 ) , H G ( Υ U * , U * , R 3 k + 1 ) , H G ( R 3 k + 1 , R 3 k + 2 , R 3 k + 2 ) , H G ( R 3 k + 2 , R 3 k + 3 , R 3 k + 3 ) } .
Thus, (4) implies
τ + F H G ( Υ U * , R 3 k + 2 , R 3 k + 3 ) F ( max { H G ( U * , R 3 k + 1 , R 3 k + 2 ) , H G ( Υ U * , U * , R 3 k + 1 ) , H G ( R 3 k + 1 , R 3 k + 2 , R 3 k + 2 ) , H G ( R 3 k + 2 , R 3 k + 3 , R 3 k + 3 ) } )
and taking the limit as k + yields
τ + F H G ( Υ U * , U * , U * ) F ( max { H G ( U * , U * , U * ) , H G ( Υ U * , U * , U * ) , H G ( U * , U * , U * ) , H G ( U * , U * , U * ) } ) = F H G ( Υ U * , U * , U * ) ,
which is a contradiction as τ > 0 . Thus, Υ U * = U * . Following the conclusion above, U * is the common attractor of Υ , Ψ , and Φ .
For uniqueness, we consider V as another common attractor of Υ ,   Ψ and Φ with H G ( U * , V , V ) > 0 . Then,
τ + F H G ( U * , V , V ) = τ + F H G ( Υ ( U * ) , Ψ ( V ) , Φ ( V ) ) F M Υ , Ψ , Φ ( U * , V , V )
where     M Υ , Ψ , Φ ( U * , V , V ) = max { H G ( U * , V , V ) , H G ( U * , Υ U * , Υ U * ) , H G ( V , Ψ V , Ψ V ) , H G ( V , Φ V , Φ V ) } = max { H G ( U * , V , V ) , H G ( U * , U * , U * ) , H G ( V , V , V ) , H G ( V , V , V ) } = H G ( U * , V , V ) .
Thus, (5) implies that τ + F H G ( U * , V , V ) F H G ( U * , V , V ) from which we conclude that H G ( U * , V , V ) = 0 , and thus, U * = V . Hence, U * is a unique common attractor of Υ , Ψ , and Φ .  □
Remark 2.
In Theorem 2, take the collection S G ( Z ) , of all singleton subsets of Z , then S G ( Z ) C G ( Z ) . Furthermore, if we take the mappings f k , g k , h k = f , g , h for each k , where f = f 1 ,   g = g 1 and h = h 1 , then the operators Υ , Ψ , Φ become
Υ v 1 , Ψ v 2 , Φ v 3 = f ( v 1 ) , g v 2 , h v 3 .
Thus, we obtain the following result on common fixed point.
Corollary 1.
Let { Z ; f k , g k , h k , k = 1 , 2 , , q } be a generalized F -iterated function system in a complete G-metric space ( Z , G ) and define the maps f , g , h : Z Z as in Remark 2. If there exists τ > 0 such that for v 1 , v 2 , v 3 Z having G f v 1 , g v 2 , h v 3 > 0 , the following holds
τ + F G f v 1 , g v 2 , h v 3 F M f , g , h v 1 , v 2 , v 3 , where M f , g , h v 1 , v 2 , v 3 = max { G ( v 1 , v 2 , v 3 ) , G ( v 1 , f ( v 1 ) , f ( v 1 ) ) , G ( v 2 , g v 2 , g v 2 ) , G ( v 3 , h v 3 , h v 3 ) } .
Then, f , g , and h have a unique common fixed point u Z . Additionally, for an arbitrary element u 0 Z , the sequence { u 0 , f u 0 , gf u 0 , h gf u 0 , f h gf u 0 , } converges to the common fixed point of f , g , and h.
Corollary 2.
In a complete G-metric space ( Z , G ) , let { Z ; ( f k , g k , h k ) , k = 1 , , q } be the generalized F-iterated function system. Define Υ , Ψ , Φ : C G ( Z ) C G ( Z ) by
Υ ( Q ) = f 1 ( Q ) f q ( Q ) , Ψ ( R ) = g 1 ( R ) g q ( R ) , Φ ( N ) = h 1 ( N ) h q ( N )
for Q , R , N C G ( Z ) . If for some m N , there exists τ > 0 such that for Q , R , N C G ( Z ) with H G ( Υ m ( Q ) , Ψ m R , Φ m ( N ) ) > 0 it holds that
τ + F H G ( Υ m ( Q ) , Ψ m R , Φ m ( N ) ) F ( M Υ m , Ψ m , Φ m ( Q , R , N ) ) , where     M Υ m , Ψ m , Φ m ( Q , R , N ) = max { H G ( Q , R , N ) , H G ( Q , Υ m ( Q ) , Υ m ( Q ) ) , H G ( R , Ψ m R , Ψ m R ) , H G ( N , Φ m N , Φ m N ) } .
Then, there exists unique U * C G ( Z ) that satisfies
U * = Υ U * = Ψ U * = Φ U * .
Additionally, for any arbitrarily chosen initial set R 0 C G ( Z ) , the sequence
{ R 0 , Υ R 0 , Ψ Υ R 0 , Φ Ψ Υ R 0 , Υ Φ Ψ Υ R 0 , }
of compact sets converges to the common attractor U * .
Proof. 
From Theorem 2, we obtain that there exists unique U * C G ( Z ) that satisfy
U * = Υ m U * = Ψ m U * = Φ m U * .
Now, Υ U * = Υ Υ m U * = Υ m Υ U * , that is, Υ U * is also an attractor of Υ m . Following the similar steps for those in Proof of Theorem 2, we obtain that Υ U * is also the common attractor of Υ m , Ψ m and Φ m . By the uniqueness of the common attractor, U * = Υ U * = Ψ U * = Φ U * .  □
Example 3.
Let Z = [ 0 , 1 ] × [ 0 , 1 ] and G-metric on Z be defined as
G u , v , w = max i = 1 2 u i v i 2 1 2 , i = 1 2 v i w i 2 1 2 , i = 1 2 w i u i 2 1 2
for u = u 1 , u 2 ,   v = v 1 , v 2 ,   w = w 1 , w 2 . Define f k , g k , h k : Z Z ,   k = 1 , 2 by
f 1 z 1 , z 2 = z 1 + 1 7 , z 2 + 3 9   for   z 1 , z 2 [ 0 , 1 ] ,
g 1 z 1 , z 2 = 2 z 1 + 3 20 , 3 ( z 2 + 1 ) 11   for   z 1 , z 2 [ 0 , 1 ] ,
h 1 z 1 , z 2 = 3 z 1 + 2 15 , 4 z 2 + 3 12   for   z 1 , z 2 [ 0 , 1 ] ,
f 2 z 1 , z 2 = 2 z 1 + 5 12 , z 2 + 4 8   for   z 1 , z 2 [ 0 , 1 ] ,
g 2 z 1 , z 2 = 2 ( z 1 + 1 ) 6 , 2 z 2 + 4 9   for   z 1 , z 2 [ 0 , 1 ] ,
h 2 z 1 , z 2 = 5 z 1 + 2 9 , 3 z 2 + 4 10   for   z 1 , z 2 [ 0 , 1 ] .
The maps f 1 , f 2 , g 1 , g 2 , h 1 , and h 2 are continuous and non commutative.
Now, we show that for F ϝ and τ > 0 , the mappings f k , g k , h k : Z Z , k = 1 , 2 satisfy
τ + F ( G f k u , g k v , h k w ) F m f k , g k , h k u , v , w where m f k , g k , h k u , v , w = max { G u , v , w , G u , f k u , f k u , G v , g k v , g 1 v , G w , h k w , h k w } .
for all u , v , w Z obeying G f k u , g k v , h k w > 0 for each k 1 , 2 . As
G f 1 u , g 1 v , h 1 w = max i = 1 2 f 1 u i g 1 v i 2 , i = 1 2 g 1 v i h 1 w i 2 1 2 , i = 1 2 h 1 w i f 1 u i 2 1 2 = max f 1 u 1 g 1 v 1 2 + f 1 u 2 g 1 v 2 2 1 2 , g 1 v 1 h 1 w 1 2 + g 1 v 2 h 1 w 2 2 1 2 , h 1 w 1 f 1 u 1 2 + h 1 w 2 f 1 u 2 2 1 2 = max u 1 + 1 7 2 v 1 + 3 20 2 + u 2 + 3 9 3 ( v 2 + 1 ) 11 2 1 2 , 2 v 1 + 3 20 3 w 1 + 2 15 2 + 3 ( v 2 + 1 ) 11 4 w 2 + 3 12 2 1 2 , 3 w 1 + 2 15 u 1 + 1 7 2 + 4 w 2 + 3 12 u 2 + 3 9 2 1 2 = max 20 u 1 + 20 14 v 1 + 21 140 2 + 11 u 2 + 33 27 v 2 + 27 99 2 1 2 , 6 v 1 + 9 12 w 1 + 8 60 2 + ( 36 v 2 + 36 ) 44 w 2 + 33 132 2 1 2 , 21 w 1 + 14 15 u 1 + 15 105 2 + 12 w 2 + 9 4 u 2 + 12 36 2 1 2 = max 20 u 1 14 v 1 1 140 2 + 27 v 1 11 u 2 6 99 2 1 2 , 12 w 1 6 v 1 1 60 2 + 44 w 2 36 v 2 3 132 2 1 2 , 21 w 1 15 u 1 1 105 2 + 12 w 2 4 u 2 3 36 2 1 2 ; G u , v , w = max i = 1 2 u i v i 2 1 2 , i = 1 2 v i w i 2 1 2 , i = 1 2 w i u i 2 1 2 = max u 1 v 1 2 + u 2 v 2 2 1 2 , v 1 w 1 2 + v 2 w 2 2 1 2 , w 1 u 1 2 + w 2 u 2 2 1 2 ;
G u , f 1 u , f 1 u = max i = 1 2 u i f 1 u i 2 1 2 , i = 1 2 f 1 u i f 1 u i 2 1 2 , i = 1 2 f 1 u i u i 2 1 2 = max u 1 f 1 u 1 2 + u 2 f 1 u 2 2 1 2 , f 1 u 1 f 1 u 1 2 + f 1 u 2 f 1 u 2 2 1 2 , u 1 f 1 u 1 2 + u 2 f 1 u 2 2 1 2 = u 1 f 1 u 1 2 + u 2 f 1 u 2 2 1 2 = u 1 u 1 + 1 7 2 + u 2 u 2 + 3 9 2 1 2 = 6 u 1 1 7 2 + 8 u 2 3 9 2 1 2 ;
G v , g 1 v , g 1 v = max i = 1 2 v i g 1 v i 2 1 2 , i = 1 2 g 1 v i g 1 v i 2 1 2 , i = 1 2 g 1 v i v i 2 1 2 = max v 1 g 1 v 1 2 + v 2 g 1 v 2 2 1 2 , g 1 v 1 g 1 v 1 2 + g 1 v 2 g 1 v 2 2 1 2 , v 1 g 1 v 1 2 + v 2 g 1 v 2 2 1 2 = v 1 g 1 v 1 2 + v 2 g 1 v 2 2 1 2 = v 1 2 v 1 + 3 20 2 + v 2 3 ( v 2 + 1 ) 11 2 1 2 = 18 v 1 3 20 2 + 8 v 2 3 11 2 1 2 ;
G w , h 1 w , h 1 w = max i = 1 2 w i h 1 w i 2 1 2 , i = 1 2 h 1 w i h 1 w i 2 1 2 , i = 1 2 h 1 w i w i 2 1 2 = max w 1 h 1 w 1 2 + w 2 h 1 w 2 2 1 2 , h 1 w 1 h 1 w 1 2 + h 1 w 2 h 1 w 2 2 1 2 , w 1 h 1 w 1 2 + w 2 h 1 w 2 2 1 2 = w 1 h 1 w 1 2 + w 2 h 1 w 2 2 1 2 = w 1 3 w 1 + 2 15 2 + v 2 4 w 2 + 3 12 2 1 2 = 12 w 1 2 15 2 + 8 w 2 3 12 2 1 2 .
Now, by taking F λ = ln λ for λ > 0 , τ = ln ( 20 19 ) , and for u , v , w Z having
G f 1 u , g 1 v , h 1 w > 0 , we have
G f 1 u , g 1 v , h 1 w = max 20 u 1 14 v 1 1 140 2 + 27 v 1 11 u 2 6 99 2 1 2 , 12 w 1 6 v 1 1 60 2 + 44 w 2 36 v 2 3 132 2 1 2 , 21 w 1 15 u 1 1 105 2 + 12 w 2 4 u 2 3 36 2 1 2 19 20 max u 1 v 1 2 + u 2 v 2 2 1 2 , v 1 w 1 2 + v 2 w 2 2 1 2 , w 1 u 1 2 + w 2 u 2 2 1 2 , 6 u 1 1 7 2 + 8 u 2 3 9 2 1 2 , 18 v 1 3 20 2 + 8 v 2 3 11 2 1 2 , 12 w 1 2 15 2 + 8 w 2 3 12 2 1 2 = 19 20 max max u 1 v 1 2 + u 2 v 2 2 1 2 , v 1 w 1 2 + v 2 w 2 2 1 2 , w 1 u 1 2 + w 2 u 2 2 1 2 , 6 u 1 1 7 2 + 8 u 2 3 9 2 1 2 , 18 v 1 3 20 2 + 8 v 2 3 11 2 1 2 , 12 w 1 2 15 2 + 8 w 2 3 12 2 1 2 = e τ max { G u , v , w , G u , f 1 u , f 1 u , G v , g 1 v , g 1 v , G w , h 1 w , h 1 w } .
Again for u , v , w Z , we have
G f 2 u , g 2 v , h 2 w = max i = 1 2 f 2 u i g 2 v i 2 , i = 1 2 g 2 v i h 2 w i 2 1 2 , i = 1 2 h 2 w i f 2 u i 2 1 2 = max f 2 u 1 g 2 v 1 2 + f 2 u 2 g 2 v 2 2 1 2 , g 2 v 1 h 2 w 1 2 + g 2 v 2 h 2 w 2 2 1 2 , h 2 w 1 f 2 u 1 2 + h 2 w 2 f 2 u 2 2 1 2 = max 2 u 1 + 5 12 2 ( v 1 + 1 ) 6 2 + u 2 + 4 8 2 v 2 + 4 9 2 1 2 , 2 ( v 1 + 1 ) 6 5 w 1 + 2 9 2 + 2 v 2 + 4 9 3 w 2 + 4 10 2 1 2 , 5 w 1 + 2 9 2 u 1 + 5 12 2 + 3 w 2 + 4 10 u 2 + 4 8 2 1 2 = max 2 u 1 + 5 4 v 1 + 4 12 2 + 9 u 2 + 36 16 v 2 + 32 72 2 1 2 , 6 v 1 + 3 10 w 1 + 4 18 2 + ( 20 v 2 + 40 ) 27 w 2 + 36 90 2 1 2 , 20 w 1 + 8 6 u 1 + 15 36 2 + 12 w 2 + 16 5 u 2 + 20 40 2 1 2 = max 4 v 1 2 u 1 1 12 2 + 16 v 2 9 u 2 4 72 2 1 2 , 10 w 1 6 v 1 + 1 18 2 + 27 w 2 20 v 2 4 90 2 1 2 , 20 w 1 6 u 1 7 36 2 + 12 w 2 5 u 2 4 40 2 1 2 ;
G u , v , w = max i = 1 2 u i v i 2 1 2 , i = 1 2 v i w i 2 1 2 , i = 1 2 w i u i 2 1 2 = max u 1 v 1 2 + u 2 v 2 2 1 2 , v 1 w 1 2 + v 2 w 2 2 1 2 , w 1 u 1 2 + w 2 u 2 2 1 2 ; G u , f 2 u , f 2 u = max i = 1 2 u i f 2 u i 2 1 2 , i = 1 2 f 2 u i f 2 u i 2 1 2 , i = 1 2 f 2 u i u i 2 1 2 = max u 1 f 2 u 1 2 + u 2 f 2 u 2 2 1 2 , f 2 u 1 f 2 u 1 2 + f 2 u 2 f 2 u 2 2 1 2 , u 1 f 2 u 1 2 + u 2 f 2 u 2 2 1 2 = u 1 f 2 u 1 2 + u 2 f 2 u 2 2 1 2 = u 1 2 u 1 + 5 12 2 + u 2 u 2 + 4 8 2 1 2 = 10 u 1 5 12 2 + 7 u 2 4 8 2 1 2 ;
G v , g 2 v , g 2 v = max i = 1 2 v i g 2 v i 2 1 2 , i = 1 2 g 2 v i g 2 v i 2 1 2 , i = 1 2 g 2 v i v i 2 1 2 = max v 1 g 2 v 1 2 + v 2 g 2 v 2 2 1 2 , g 2 v 1 g 2 v 1 2 + g 2 v 2 g 2 v 2 2 1 2 , v 1 g 2 v 1 2 + v 2 g 2 v 2 2 1 2 = v 1 g 2 v 1 2 + v 2 g 2 v 2 2 1 2 = v 1 2 ( v 1 + 1 ) 6 2 + v 2 2 v 2 + 4 9 2 1 2 = 4 v 1 2 6 2 + 7 v 2 4 9 2 1 2 ;
G w , h 2 w , h 2 w = max i = 1 2 w i h 2 w i 2 1 2 , i = 1 2 h 2 w i h 2 w i 2 1 2 , i = 1 2 h 2 w i w i 2 1 2 = max w 1 h 2 w 1 2 + w 2 h 2 w 2 2 1 2 , h 2 w 1 h 2 w 1 2 + h 2 w 2 h 2 w 2 2 1 2 , w 1 h 2 w 1 2 + w 2 h 2 w 2 2 1 2 = w 1 h 2 w 1 2 + w 2 h 2 w 2 2 1 2 = w 1 5 w 1 + 2 9 2 + v 2 3 z 2 + 4 10 2 1 2 = 4 w 1 2 9 2 + 7 w 2 4 10 2 1 2 .
Thus, by taking F λ = ln λ for λ > 0 , τ = ln ( 20 19 ) , and for u , v , w Z having
G f 2 u , g 2 v , h 2 w > 0 , we have
G f 2 u , g 2 v , h 2 w = max 4 v 1 2 u 1 1 12 2 + 16 v 2 9 u 2 4 72 2 1 2 , 10 w 1 6 v 1 + 1 18 2 + 27 w 2 20 v 2 4 90 2 1 2 , 20 w 1 6 u 1 7 36 2 + 12 w 2 5 u 2 4 40 2 1 2 19 20 max u 1 v 1 2 + u 2 v 2 2 1 2 , v 1 w 1 2 + v 2 w 2 2 1 2 , w 1 u 1 2 + w 2 u 2 2 1 2 , 10 u 1 5 12 2 + 7 u 2 4 8 2 1 2 , 4 v 1 2 6 2 + 7 v 2 4 9 2 1 2 , 4 w 1 2 9 2 + 7 w 2 4 10 2 1 2 = 19 20 max max u 1 v 1 2 + u 2 v 2 2 1 2 , v 1 w 1 2 + v 2 w 2 2 1 2 , w 1 u 1 2 + w 2 u 2 2 1 2 , 10 u 1 5 12 2 + 7 u 2 4 8 2 1 2 , 4 v 1 2 6 2 + 7 v 2 4 9 2 1 2 , 4 w 1 2 9 2 + 7 w 2 4 10 2 1 2 = e τ max { G u , v , w , G u , f 1 u , f 1 u , G v , g 1 v , g 1 v , G w , h 1 w , h 1 w } .
Thus, for all u , v , w Z satisfying G f k u , g k v , h k w > 0 for k = 1 , 2 , we have
G f k u , g k v , h k w e τ m f k , g k , h k u , v , w where     m f k , g k , h k u , v , w = max { G u , v , w , G u , f k u , f k u , G v , g k v , g 1 v , G w , h k w , h k w } .
That is, { Z ; f k , g k , h k ,   k = 1 , 2 } is the generalized F-iterated function system. Now, we define the mappings Υ , Ψ , Φ : C G ( Z ) C G ( Z ) for all Q , R , N C G ( Z ) by
Υ ( Q ) = f 1 ( Q ) f 2 ( Q ) , Ψ ( R ) = g 1 ( R ) g 2 ( R ) , Φ ( N ) = h 1 ( N ) h 2 ( N )
By Proposition 2, for Q , R , N C G ( Z ) satisfying H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) > 0 , the condition
H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) e τ M Υ , Ψ , Φ ( Q , R , N ) where     M Υ , Ψ , Φ ( Q , R , N ) = max { H G ( Q , R , N ) , H G ( Q , Υ ( Q ) , Υ ( Q ) ) , H G ( R , Ψ R , Ψ R ) , H G ( N , Φ N , Φ N ) } .
holds. Thus, all the conditions of Theorem 2 are satisfied, and moreover, for any initial set R 0 C G ( Y ) , the sequence { R 0 , Υ R 0 , Ψ Υ R 0 , Φ Ψ Υ R 0 , Υ Φ Ψ Υ R 0 , } of compact sets is convergent and has a limit, the common attractor of Υ , Ψ , and Φ. Figure 1 shows the convergence process of sequence steps at n = 2 , 4 , 6 , and 8 in (a), (b), (c), and (d), respectively. The green points in the figures show the data points of convergence steps and the blue lines show the movements of data points in the different places.
Example 4.
Let Z = [ 0 , 1 ] × [ 0 , 1 ] and G-metric on Z be defined as
G u , v , w = max i = 1 2 u i v i , i = 1 2 v i w i , i = 1 2 w i u i
for u = u 1 , u 2 ,   v = v 1 , v 2 ,   w = w 1 , w 2 Z . Define f k , g k , h k : Z Z , k = 1 , 2 by
f 1 z 1 , z 2 = z 1 2 + 1 5 , z 2 3 + 1 3 , f 2 z 1 , z 2 = z 1 4 + 3 10 , 2 z 2 5 + 3 10 , g 1 z 1 , z 2 = 1 10 2.5 z 1 z 2 + 3.5 , 1 10 2.5 z 1 + z 2 + 3.5 , g 2 z 1 , z 2 = 1 10 2.5 z 1 + 3 z 2 + 1.5 , 1 10 2.5 z 1 + 3 z 2 + 4.5 , h 1 z 1 , z 2 = 3 z 1 + 2 8 , 3 z 2 + 2 7 , h 2 z 1 , z 2 = z 1 + 2 6 , 2 z 2 + 3 8 .
The maps f 1 , f 2 , g 1 , g 2 , h 1 , h 2 are continuous and non-commutative. With F λ = ln λ + λ for some λ > 0 and τ > 0 , for v 1 , v 2 , v 3 Z obeying G f k v 1 , g k v 2 , h k v 3 > 0 , for k = 1 , 2 ,
G f k v 1 , g k v 2 , h k v 3 e G f k v 1 , g k v 2 , h k v 3 m f k , g k , h k v 1 , v 2 , v 3 e τ m f k , g k , h k v 1 , v 2 , v 3 , w h e r e m f k , g k , h k v 1 , v 2 , v 3 = max { G ( v 1 , v 2 , v 3 ) , G ( v 1 , f k ( v 1 ) , f k ( v 1 ) ) , G ( v 2 , g k v 2 , g k v 2 ) , G ( v 3 , h k v 3 , h k v 3 ) }
Now, from the generalized F-iterated function system { Z ; f 1 , f 2 , g 1 , g 2 , h 1 , h 2 } , we define the mappings Υ , Ψ , Φ : C G ( Z ) C G ( Z ) for Q , R , N C G ( Z ) by
Υ ( Q ) = f 1 ( Q ) f 2 ( Q ) , Ψ ( R ) = g 1 ( R ) g 2 ( R ) , Φ ( N ) = h 1 ( N ) h 2 ( N ) .
Then, for Q , R , N C G ( Z ) having H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) > 0 ,
H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) e H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) M Υ , Ψ , Φ ( Q , R , N ) e τ M Υ , Ψ , Φ ( Q , R , N ) w h e r e   τ > 0   a n d M Υ , Ψ , Φ ( Q , R , N ) = max { H G ( Q , R , N ) , H G ( Q , Υ ( Q ) , Υ ( Q ) ) , H G ( R , Ψ R , Ψ R ) , H G ( N , Φ N , Φ N ) } .
holds. Thus, all the conditions of Theorem 2 are satisfied, and moreover, for any initial set R 0 C G ( Z ) , the sequence { R 0 , Υ R 0 , Ψ Υ R 0 , Φ Ψ Υ R 0 , Υ Φ Ψ Υ R 0 , } of compact sets is convergent and has a limit, the common attractor of Υ , Ψ , and Φ. Figure 2 shows the convergence process of sequence steps at n = 2 , 4 , 6 , and 8 in (a), (b), (c), and (d), respectively. The green points in the figures show the data points of convergence steps and the blue lines show the movements of data points in the different places.
If we are interchanging the order of variables in maps, then we obtain a new form of common attractor of Υ , Ψ , and Φ, see for example in Figure 3. The green points in the figures show the data points of convergence steps and the blue lines show the movements of data points in the different places.
Example 5.
Let Z 3 = [ 0 , 1 ] 3 and the G-metric on Z 3 is defined as
G u 1 , u 2 , u 3 = max { i = 1 3 x i x i + 1 , i = 1 3 y i y i + 1 , i = 1 3 z i z i + 1 } for u i = x i , y i , z i Z 3 for i { 1 , 2 , 3 } , where u 4 = u 1 . Define f k , g k , h k : Z 3 Z 3 ,   k = 1 , 2 by
f 1 u 1 , u 2 , u 3 = 0.8 u 1 + 0.1 ,   0.8 u 2 + 0.02 ,   0.8 u 3 + 0.04   for   u 1 , u 2 , u 3 [ 0 , 1 ] , f 2 u 1 , u 2 , u 3 = 0.5 u 1 + 0.2 ,   0.3 u 2 + 0.3 ,   0.5 u 3 + 0.4   for   u 1 , u 2 , u 3 [ 0 , 1 ] , g 1 u 1 , u 2 , u 3 = 0.35 u 1 0.35 u 2 + 0.26 , 0.35 u 1 + 0.35 u 2 + 0.07 , 0.35 u 2 + 0.35 u 3 + 0.76 , g 2 u 1 , u 2 , u 3 = 0.5 u 1 + 0.1 ,   0.4 u 2 + 0.03 ,   0.5 u 3 + 0.06   for   u 1 , u 2 , u 3 [ 0 , 1 ] , h 1 u 1 , u 2 , u 3 = 0.3 u 1 + 0.2 ,   0.4 u 2 + 0.1 ,   0.2 u 3 + 0.4   for   u 1 , u 2 , u 3 [ 0 , 1 ] , h 2 u 1 , u 2 , u 3 = 0.1 u 1 + 0.3 ,   0.2 u 2 + 0.02 ,   0.3 u 3 + 0.4   for   u 1 , u 2 , u 3 [ 0 , 1 ] .
The maps f 1 , f 2 , g 1 , g 2 , h 1 , h 2 are continuous and non-commutative, and { Z 3 ; f 1 , f 2 , g 1 , g 2 , h 1 , h 2 } is a generalized F-iterated function system. Define Υ , Ψ , Φ : C G ( Z 3 ) C G ( Z 3 ) by Υ ( Q ) = f 1 ( Q ) f 2 ( Q ) , Ψ ( R ) = g 1 ( R ) g 2 ( R ) , Φ ( N ) = h 1 ( N ) h 2 ( N ) for Q , R , N C G ( Z 3 ) . Then for Q , R , N C G ( Z 3 ) having H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) > 0 , the condition
H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) e H G ( Υ ( Q ) , Ψ R , Φ ( N ) ) M Υ , Ψ , Φ ( Q , R , N ) e τ M Υ , Ψ , Φ ( Q , R , N ) w h e r e M Υ , Ψ , Φ ( Q , R , N ) = max { H G ( Q , R , N ) , H G ( Q , Υ ( Q ) , Υ ( Q ) ) , H G ( R , Ψ R , Ψ R ) , H G ( N , Φ N , Φ N ) } .
holds. Thus, all the conditions of Theorem 2 are satisfied, and moreover, for any initial set R 0 C G ( Z 3 ) , the sequence { R 0 , Υ R 0 , Ψ Υ R 0 , Φ Ψ Υ R 0 , Υ Φ Ψ Υ R 0 , } of compact sets is convergent and has a limit, the common attractor of Υ , Ψ , and Φ (see Figure 4). The Figure 4 shows the convergence process of sequence steps at n = 2 , 4 , 6 , and 8 in (a), (b), (c), and (d), respectively. The green points in the figures show the data points of convergence steps and the blue lines show the movements of data points in the different places.
Interchanging the order of variables in maps yields a new form of common attractor of Υ , Ψ , and Φ (see Figure 5). The green points in the figures show the data points of convergence steps and the blue lines show the movements of data points in the different places.

3. Conclusions

In this paper, we investigated a method of a generalized F-iterated function system for common attractors based on a finite family of generalized F-contractions in G-metric spaces. We obtained the fractals as a common attractor of the generalized F-iterated function system. We showed that the triplet of F-Hutchinson operators defined by the finite number of general F-contractions on a complete G-metric space is itself a generalized F-contraction mapping. We also presented several examples in 2-D and 3-D applying our results. While the figures in the examples are for the illustration of the main results of the paper, rather than the investigation of numerical aspects of convergence of iterations or its dependence on the iterated maps, they hint that the further numerical analysis of the convergence of iterations to attractors would be an interesting direction of investigation for the generalised iterated function systems and maps considered in this paper.

Author Contributions

Conceptualization, methodology, T.N. and S.S.; writing—original draft preparation, T.N.; writing—review and editing, T.N. and S.S.; supervision, S.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The authors are grateful to the reviewers for their useful remarks and comments that helped to improve the paper.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Meir, A.; Keeler, E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326–329. [Google Scholar] [CrossRef]
  3. Mustafa, Z.; Sims, B. Fixed point theorems for contractive mappings in Complete G-metric spaces. Fixed Point Theory Appl. 2009, 2009, 917175. [Google Scholar] [CrossRef]
  4. Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
  5. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
  6. Abbas, M.; Rhoades, B. Common fixed point results for non-commuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 2009, 215, 262–269. [Google Scholar]
  7. Azam, A.; Arshad, M. Kannan fixed point theorem on generalized metric spaces. J. Nonlinear Sci. Appl. 2008, 1, 45–48. [Google Scholar] [CrossRef]
  8. Mihet, D. On Kannan fixed point principle in generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2, 92–96. [Google Scholar] [CrossRef]
  9. Mustafa, Z.; Sims, B. Some Remarks concerning D-metric spaces. In Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia, Spain, 13–19 July 2003; pp. 189–198. [Google Scholar]
  10. Mustafa, Z.; Obiedat, H.; Awawdeh, F. Some common fixed point theorem for mapping on complete G-metric spaces. Fixed Point Theory Appl. 2008, 2008, 189870. [Google Scholar] [CrossRef]
  11. Mustafa, Z.; Shatanawi, W.; Bataineh, M. Existence of fixed point results in G-metric spaces. Int. J. Math. Math. Sci. 2009, 2009, 283028. [Google Scholar] [CrossRef]
  12. Saadati, R.; Vaezpour, S.M.; Vetro, P.; Rhoades, B.E. Fixed point theorems in generalized partially ordered G-metric spaces. Math. Comput. Model. 2010, 52, 797–801. [Google Scholar] [CrossRef]
  13. Sarma, I.R.; Rao, J.M.; Rao, S.S. Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2, 180–182. [Google Scholar] [CrossRef]
  14. Tahat, N.; Aydi, H.; Karapinar, E.; Shatanawi, W. Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. 2012, 2012, 48. [Google Scholar] [CrossRef]
  15. Hutchinson, J. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
  16. Barnsley, M.F. Fractals Everywhere, 2nd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
  17. Barnsley, M.; Vince, A. Developments in fractal geometry. Bull. Math. Sci. 2013, 3, 299–348. [Google Scholar] [CrossRef]
  18. Goyal, K.; Prasad, B. Generalized iterated function systems in multi-valued mapping. AIP Conf. Proc. 2021, 2316, 040001. [Google Scholar]
  19. Secelean, N.A. Generalized countable iterated function systems. FILOMAT 2011, 25, 21–36. [Google Scholar] [CrossRef]
  20. Nazir, T.; Silvestrov, S.; Abbas, M. Fractals of generalized F-Hutchinson operator. Waves Wavelets Fractals Adv. Anal. 2016, 2, 29–40. [Google Scholar]
  21. Navascués, M.A. Approximation of fixed points and fractal functions by means of different iterative algorithms. Chaos Solitons Fractals 2024, 180, 114535. [Google Scholar] [CrossRef]
  22. Navascués, M.A.; Mohapatra, R.N. Collage theorems, invertibility and fractal functions. Fract. Calc. Appl. Anal. 2024, 27, 1112–1135. [Google Scholar] [CrossRef]
  23. Thangaraj, C.; Easwaramoorthy, D.; Selmi, B.; Chamola, B.P. Generation of fractals via iterated function system of Kannan contractions in controlled metric space. Math. Comput. Simul. 2024, 222, 188–198. [Google Scholar] [CrossRef]
  24. Nazir, T.; Silvestrov, S. The Generalized Iterated Function System and Common Attractors of Generalized Hutchinson Operators in Dislocated Metric Spaces. Fractal Fract. 2023, 7, 832. [Google Scholar] [CrossRef]
  25. Abbas, M.; Nazir, T.; Vetro, P. Common fixed point results for three maps in G-metric spaces. FILOMAT 2011, 25, 1–17. [Google Scholar] [CrossRef]
  26. Agarwal, R.P.; Karapınar, E.; O’Regan, D.; Roldan-Lopez-de-Hierro, A.F. Fixed Point Theory in Metric Type Spaces; Springer: Cham, Switzerland, 2015. [Google Scholar]
  27. Kutbi, M.A.; Latif, A.; Nazir, T. Generalized rational contractions in semi metric spaces via iterated function system. RACSAM 2020, 114, 1–16. [Google Scholar] [CrossRef]
  28. Kaewcharoen, A.; Kaewkhao, A. Common fixed points for single-valued and multi-valued mappings in G-metric spaces. Int. J. Math. Anal. 2011, 5, 1775–1790. [Google Scholar]
  29. Wardowski, D. Fixed points of new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]
Figure 1. Iteration steps of the convergence to the common attractor of Υ , Ψ , and Φ .
Figure 1. Iteration steps of the convergence to the common attractor of Υ , Ψ , and Φ .
Fractalfract 08 00346 g001
Figure 2. Iteration steps of the convergence to the common attractor of Υ , Ψ , and Φ .
Figure 2. Iteration steps of the convergence to the common attractor of Υ , Ψ , and Φ .
Fractalfract 08 00346 g002
Figure 3. Iteration steps of the convergence to the common attractor of Υ , Ψ , and Φ .
Figure 3. Iteration steps of the convergence to the common attractor of Υ , Ψ , and Φ .
Fractalfract 08 00346 g003
Figure 4. Iteration steps to the convergence of the common attractor of Υ , Ψ , and Φ .
Figure 4. Iteration steps to the convergence of the common attractor of Υ , Ψ , and Φ .
Fractalfract 08 00346 g004
Figure 5. Iteration steps to the convergence of the common attractor of Υ , Ψ , and Φ .
Figure 5. Iteration steps to the convergence of the common attractor of Υ , Ψ , and Φ .
Fractalfract 08 00346 g005
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Nazir, T.; Silvestrov, S. Common Attractors for Generalized F-Iterated Function Systems in G-Metric Spaces. Fractal Fract. 2024, 8, 346. https://doi.org/10.3390/fractalfract8060346

AMA Style

Nazir T, Silvestrov S. Common Attractors for Generalized F-Iterated Function Systems in G-Metric Spaces. Fractal and Fractional. 2024; 8(6):346. https://doi.org/10.3390/fractalfract8060346

Chicago/Turabian Style

Nazir, Talat, and Sergei Silvestrov. 2024. "Common Attractors for Generalized F-Iterated Function Systems in G-Metric Spaces" Fractal and Fractional 8, no. 6: 346. https://doi.org/10.3390/fractalfract8060346

Article Metrics

Back to TopTop