Applications of Fractional-Order Calculus in Robotics
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Liu, W.; Guo, L.; Li, L.; Xu, J.; Yang, G. Fractional Active Disturbance Rejection Positioning and Docking Control of Remotely Operated Vehicles: Analysis and Experimental Validation. Fractal Fract. 2024, 8, 354. https://doi.org/10.3390/fractalfract8060354.
- Li, L.; Jiang, L.; Tu, W.; Jiang, L.; He, R. Smooth and Efficient Path Planning for Car-like Mobile Robot Using Improved Ant Colony Optimization in Narrow and Large-Size Scenes. Fractal Fract. 2024, 8, 157. https://doi.org/10.3390/fractalfract8030157.
- Ramadevi, B.; Kasi, V.R.; Bingi, K. Hybrid LSTM-Based Fractional-Order Neural Network for Jeju Island’s Wind Farm Power Forecasting. Fractal Fract. 2024, 8, 149. https://doi.org/10.3390/fractalfract8030149.
- Muftah, M.N.; Faudzi, A.A.M.; Sahlan, S.; Mohamaddan, S. Fuzzy Fractional Order PID Tuned via PSO for a Pneumatic Actuator with Ball Beam (PABB) System. Fractal Fract. 2023, 7, 416. https://doi.org/10.3390/fractalfract7060416.
- Ataşlar-Ayyıldız, B. Robust Trajectory Tracking Control for Serial Robotic Manipulators Using Fractional Order-Based PTID Controller. Fractal Fract. 2023, 7, 250. https://doi.org/10.3390/fractalfract7030250.
- Liu, X.; Gan, H.; Luo, Y.; Chen, Y.; Gao, L. Digital-Twin-Based Real-Time Optimization for a Fractional Order Controller for Industrial Robots. Fractal Fract. 2023, 7, 167. https://doi.org/10.3390/fractalfract7020167.
- Morar, D.; Mihaly, V.; Şuşcă, M.; Dobra, P. Cascade Control for Two-Axis Position Mechatronic Systems. Fractal Fract. 2023, 7, 122. https://doi.org/10.3390/fractalfract7020122.
- Karner, T.; Belšak, R.; Gotlih, J. Using a Fully Fractional Generalised Maxwell Model for Describing the Time Dependent Sinusoidal Creep of a Dielectric Elastomer Actuator. Fractal Fract. 2022, 6, 720. https://doi.org/10.3390/fractalfract6120720.
- Ding, Y.; Liu, X.; Chen, P.; Luo, X.; Luo, Y. Fractional-Order Impedance Control for Robot Manipulator. Fractal Fract. 2022, 6, 684. https://doi.org/10.3390/fractalfract6110684.
- Bingi, K.; Rajanarayan Prusty, B.; Pal Singh, A. A Review on Fractional-Order Modelling and Control of Robotic Manipulators. Fractal Fract. 2023, 7, 77. https://doi.org/10.3390/fractalfract7010077.
References
- Tarasov, V.E. On history of mathematical economics: Application of fractional calculus. Mathematics 2019, 7, 509. [Google Scholar] [CrossRef]
- Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.M.; Ainsworth, M.; et al. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 2020, 404, 109009. [Google Scholar] [CrossRef]
- Petráš, I. Fractional-order control: New control techniques. In Fractional Order Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 71–106. [Google Scholar]
- Li, Z.; Liu, L.; Dehghan, S.; Chen, Y.; Xue, D. A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control 2017, 90, 1165–1181. [Google Scholar] [CrossRef]
- Valério, D.; Trujillo, J.J.; Rivero, M.; Machado, J.T.; Baleanu, D. Fractional calculus: A survey of useful formulas. Eur. Phys. J. Spec. Top. 2013, 222, 1827–1846. [Google Scholar] [CrossRef]
- Chen, W.; Liang, Y. New methodologies in fractional and fractal derivatives modeling. Chaos Solitons Fractals 2017, 102, 72–77. [Google Scholar] [CrossRef]
- Podlubny, I.; Petráš, I.; Skovranek, T.; Terpák, J. Toolboxes and programs for fractional-order system identification, modeling, simulation, and control. In Proceedings of the 2016 17th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 29 May–1 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 608–612. [Google Scholar]
- Vieira, L.C.; Costa, R.S.; Valério, D. An Overview of Mathematical Modelling in Cancer Research: Fractional Calculus as Modelling Tool. Fractal Fract. 2023, 7, 595. [Google Scholar] [CrossRef]
- Arora, S.; Mathur, T.; Agarwal, S.; Tiwari, K.; Gupta, P. Applications of fractional calculus in computer vision: A survey. Neurocomputing 2022, 489, 407–428. [Google Scholar] [CrossRef]
- Machado, J.T.; Lopes, A.M. Analysis of natural and artificial phenomena using signal processing and fractional calculus. Fract. Calc. Appl. Anal. 2015, 18, 459–478. [Google Scholar] [CrossRef]
- Tapadar, A.; Khanday, F.A.; Sen, S.; Adhikary, A. Fractional calculus in electronic circuits: A review. Fract. Order Syst. 2022, 1, 441–482. [Google Scholar]
- Oliveira, E.C.d.; Machado, J. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Ahmed, S.; Azar, A.T. Adaptive fractional tracking control of robotic manipulator using fixed-time method. Complex Intell. Syst. 2024, 10, 369–382. [Google Scholar] [CrossRef]
- Saif, A.; Fareh, R.; Sinan, S.; Bettayeb, M. Fractional synergetic tracking control for robot manipulator. J. Control Decis. 2024, 11, 139–152. [Google Scholar] [CrossRef]
- Angel, L.; Viola, J. Fractional order PID for tracking control of a parallel robotic manipulator type delta. Isa Trans. 2018, 79, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Bąkała, M.; Duch, P.; Ostalczyk, P. New Approach of the Variable Fractional-Order Model of a Robot Arm. Appl. Sci. 2023, 13, 3304. [Google Scholar] [CrossRef]
- Sharma, R.; Rana, K.; Kumar, V. Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 2014, 41, 4274–4289. [Google Scholar] [CrossRef]
- Copot, C.; Burlacu, A.; Ionescu, C.M.; Lazar, C.; De Keyser, R. A fractional order control strategy for visual servoing systems. Mechatronics 2013, 23, 848–855. [Google Scholar] [CrossRef]
- Sharma, R.; Gaur, P.; Mittal, A. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. Isa Trans. 2015, 58, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Monje, C.A.; Balaguer, C.; Deutschmann, B.; Ott, C. Control of a soft robotic link using a fractional-order controller. Handb. Fract. Calc. Appl. 2019, 321–338. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.P.; Bingi, K. Applications of Fractional-Order Calculus in Robotics. Fractal Fract. 2024, 8, 403. https://doi.org/10.3390/fractalfract8070403
Singh AP, Bingi K. Applications of Fractional-Order Calculus in Robotics. Fractal and Fractional. 2024; 8(7):403. https://doi.org/10.3390/fractalfract8070403
Chicago/Turabian StyleSingh, Abhaya Pal, and Kishore Bingi. 2024. "Applications of Fractional-Order Calculus in Robotics" Fractal and Fractional 8, no. 7: 403. https://doi.org/10.3390/fractalfract8070403
APA StyleSingh, A. P., & Bingi, K. (2024). Applications of Fractional-Order Calculus in Robotics. Fractal and Fractional, 8(7), 403. https://doi.org/10.3390/fractalfract8070403