Numerical Analysis and Computation of the Finite Volume Element Method for the Nonlinear Coupled Time-Fractional Schrödinger Equations
Abstract
:1. Introduction
- The finite volume element method combined with the approximation formula is established, which has second-order accuracy in both temporal and spatial directions.
- The stability for the fully discrete finite volume element scheme and the optimal error estimate result are proven based on the discrete fractional Gronwall inequality.
- Numerical experiments by choosing 1D and 2D coupled time-fractional Schrödinger equations with several different nonlinear terms are carried out to illustrate the accuracy and efficiency of our scheme.
2. Numerical Scheme and Stability
3. Error Analysis
4. Numerical Tests
5. Conclusions and Advancements
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hadhoud, A.R.; Agarwal, P.; Rageh, A.M. Numerical treatments of the nonlinear coupled time-fractional Schrödinger equations. Math. Meth. Appl. Sci. 2022, 45, 7119–7143. [Google Scholar] [CrossRef]
- Gao, W.; Li, H.; Liu, Y.; Wei, X.X. A Padé compact high-order finite volume scheme for nonlinear Schrödinger equations. Appl. Numer. Math. 2014, 85, 115–127. [Google Scholar] [CrossRef]
- Chen, C.J.; Lou, Y.Z.; Hu, H.Z. Two-grid finite volume element method for the time-dependent Schrödinger equation. Comput. Math. Appl. 2022, 108, 185–195. [Google Scholar] [CrossRef]
- Chen, C.J.; Lou, Y.Z.; Zhang, T. Two-grid Crank-Nicolson finite volume element method for the time-dependent Schrödinger equation. Adv. Appl. Math. Mech. 2022, 6, 1357–1380. [Google Scholar]
- Zhao, G.Y.; An, N.; Huang, C.B. Optimal error analysis of the Alikhanov formula for a time-fractional Schrödinger equation. J. Appl. Math. Comput. 2023, 69, 159–170. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Bu, L.L.; Mei, L.Q. Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer. Algor. 2021, 88, 419–451. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef]
- Jia, J.Q.; Jiang, X.Y.; Zhang, H. An L1 Legendre-Galerkin spectral method with fast algorithm for the two-dimensional nonlinear coupled time fractional Schrödinger equation and its parameter estimation. Comput. Math. Appl. 2021, 82, 13–35. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, F.; Turner, I.; Anh, V.; Feng, L. A finite volume method for the two-dimensional time and space variable-order fractional Bloch-Torrey equation with variable coefficients on irregular domains. Comput. Math. Appl. 2021, 98, 81–98. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, Q.X. The finite difference/finite volume method for solving the fractional diffusion equation. J. Comput. Phys. 2018, 375, 120–134. [Google Scholar] [CrossRef]
- Fang, Z.C.; Zhao, J.; Li, H.; Liu, Y. Finite volume element methods for two-dimensional time fractional reaction-diffusion equations on triangular grids. Appl. Anal. 2023, 102, 2248–2270. [Google Scholar] [CrossRef]
- Fang, Z.C.; Zhao, J.; Li, H.; Liu, Y. A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model. Numer. Algor. 2023, 93, 863–898. [Google Scholar] [CrossRef]
- Karaa, S.; Mustapha, K.; Pani, A. Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 2017, 37, 945–964. [Google Scholar] [CrossRef]
- Richard, E.; Raytcho, L.; Lin, Y.P. Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Meth. Part. Differ. Equ. 2000, 16, 285–311. [Google Scholar]
- Wang, X.; Huang, W.Z.; Li, Y.H. Conditioning of the finite volume element method for diffusion problems with general simplicial meshes. Math. Comput. 2019, 88, 2665–2696. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y. On the construction and analysis of finite volume element schemes with optimal L2 convergence rate. Numer. Math. Theor. Meth. Appl. 2021, 14, 47–70. [Google Scholar]
- Gao, G.H.; Alikhanov, A.A.; Sun, Z.Z. The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 2017, 73, 93–121. [Google Scholar] [CrossRef]
- Wang, J.F.; Yin, B.L.; Liu, Y.; Li, H.; Fang, Z.C. Mixed finite element algorithm for a nonlinear time fractional wave model. Math. Comput. Simulat. 2021, 188, 60–76. [Google Scholar] [CrossRef]
- Qin, H.Y.; Wu, F.Y.; Zhou, B.Y. Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional Schrödinger equations. J. Comput. Math. 2023, 41, 1305–1324. [Google Scholar] [CrossRef]
- Liu, J.F.; Wang, T.C.; Zhang, T. A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer. Algor. 2023, 92, 1153–1182. [Google Scholar] [CrossRef]
- Li, R.H.; Chen, Z.; Wu, W. Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Liao, H.L.; William, M.; Zhang, J.W. A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 2019, 57, 218–237. [Google Scholar] [CrossRef]
Order | Order | Order | Order | |||||
40 | 7.2311 × | 8.0798 × | 6.0127 × | 3.8495 × | ||||
80 | 1.8392 × | 1.9751 | 2.0164 × | 2.0026 | 1.5035 × | 1.9997 | 9.6428 × | 1.9971 |
160 | 4.6246 × | 1.9917 | 5.0456 × | 1.9987 | 3.7574 × | 2.0005 | 2.4129 × | 1.9987 |
320 | 1.1586 × | 1.9970 | 1.2623 × | 1.9990 | 9.3854 × | 2.0012 | 6.0347 × | 1.9994 |
Order | Order | Order | Order | |||||
40 | 1.1670 × | 1.1110 × | 7.6529 × | 4.8110 × | ||||
80 | 2.9829 × | 1.9680 | 2.7871 × | 1.9950 | 1.9200 × | 1.9949 | 1.2071 × | 1.9948 |
160 | 7.5194 × | 1.9880 | 6.9905 × | 1.9953 | 4.8049 × | 1.9985 | 3.0225 × | 1.9977 |
320 | 1.8866 × | 1.9948 | 1.7508 × | 1.9974 | 1.2009 × | 2.0004 | 7.5618 × | 1.9989 |
Order | Order | Order | |||||
0.25 | 5 | 6.8221 × | 7.9125 × | 8.1875 × | |||
10 | 1.4410 × | 2.2432 | 1.6993 × | 2.2192 | 1.7639 × | 2.2147 | |
20 | 3.6666 × | 1.9745 | 4.3539 × | 1.9646 | 4.5227 × | 1.9635 | |
40 | 8.9341 × | 2.0371 | 1.0550 × | 2.0451 | 1.0946 × | 2.0468 | |
0.5 | 5 | 6.8343 × | 7.9455 × | 8.2235 × | |||
10 | 1.4444 × | 2.2423 | 1.7066 × | 2.2190 | 1.7721 × | 2.2143 | |
20 | 3.6786 × | 1.9733 | 4.3844 × | 1.9607 | 4.5552 × | 1.9599 | |
40 | 8.9647 × | 2.0368 | 1.0626 × | 2.0447 | 1.1027 × | 2.0464 | |
0.75 | 5 | 6.8756 × | 7.9899 × | 8.2663 × | |||
10 | 1.4608 × | 2.2347 | 1.7188 × | 2.2167 | 1.7816 × | 2.2141 | |
20 | 3.7271 × | 1.9707 | 4.4257 × | 1.9575 | 4.5964 × | 1.9546 | |
40 | 9.0907 × | 2.0356 | 1.0739 × | 2.0431 | 1.1141 × | 2.0446 | |
Order | Order | Order | |||||
0.25 | 5 | 4.4443 × | 6.9731 × | 7.8671 × | |||
10 | 1.1990 × | 1.8902 | 1.6796 × | 2.0537 | 1.8499 × | 2.0883 | |
20 | 2.9223 × | 2.0366 | 4.0106 × | 2.0662 | 4.4022 × | 2.0712 | |
40 | 7.0509 × | 2.0512 | 9.7921 × | 2.0341 | 1.0716 × | 2.0385 | |
0.5 | 5 | 6.2202 × | 8.1732 × | 8.9482 × | |||
10 | 1.6715 × | 1.8958 | 2.0288 × | 2.0103 | 2.1689 × | 2.0446 | |
20 | 4.0815 × | 2.0340 | 4.8742 × | 2.0574 | 5.1915 × | 2.0628 | |
40 | 9.9773 × | 2.0324 | 1.1925 × | 2.0312 | 1.2671 × | 2.0346 | |
0.75 | 5 | 8.1627 × | 9.5044 × | 1.0100 × | |||
10 | 2.2126 × | 1.8833 | 2.4177 × | 1.9750 | 2.5167 × | 2.0048 | |
20 | 5.4180 × | 2.0299 | 5.8386 × | 2.0499 | 6.0542 × | 2.0555 | |
40 | 1.3310 × | 2.0253 | 1.4317 × | 2.0279 | 1.4815 × | 2.0309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Yang, Y.; Li, H.; Fang, Z.; Liu, Y. Numerical Analysis and Computation of the Finite Volume Element Method for the Nonlinear Coupled Time-Fractional Schrödinger Equations. Fractal Fract. 2024, 8, 480. https://doi.org/10.3390/fractalfract8080480
Zhao X, Yang Y, Li H, Fang Z, Liu Y. Numerical Analysis and Computation of the Finite Volume Element Method for the Nonlinear Coupled Time-Fractional Schrödinger Equations. Fractal and Fractional. 2024; 8(8):480. https://doi.org/10.3390/fractalfract8080480
Chicago/Turabian StyleZhao, Xinyue, Yining Yang, Hong Li, Zhichao Fang, and Yang Liu. 2024. "Numerical Analysis and Computation of the Finite Volume Element Method for the Nonlinear Coupled Time-Fractional Schrödinger Equations" Fractal and Fractional 8, no. 8: 480. https://doi.org/10.3390/fractalfract8080480